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Abstract

While humans are capable of building connections between words and sensorial modalities by
using commonsense knowledge, it is not straightforward for machines to interpret sensorial in-
formation. To this end, a lexicon associating words with human senses, namely sight, hearing,
taste, smell and touch, would be crucial. Nonetheless, to the best of our knowledge, there is no
systematic attempt in the literature to build such a resource. In this paper, we propose a compu-
tational method based on bootstrapping and corpus statistics to automatically associate English
words with senses. To evaluate the quality of the resulting lexicon, we create a gold standard via
crowdsourcing and show that a simple classifier relying on the lexicon outperforms two base-
lines on a sensory classification task, both at word and sentence level. The results confirm the
soundness of the proposed approach for the construction of the lexicon and the usefulness of the
resource for computational applications.

1 Introduction

The connection between our senses and the way we perceive the world has been an important philosophi-
cal topic for centuries. According to a classification that dates back to Aristotle (Johansen, 1997), senses
can be categorized as sight, hearing, taste, smell and touch. With the help of perception, we can process
the data coming from our sensory receptors and become aware of our environment. While interpreting
sensory data, we unconsciously use our existing knowledge, experience and understanding of the world
to create a private experience (Bernstein, 2010).
Language has a significant role as our main communication device to convert our private experiences

to shared representations of the environment that we perceive (Majid and Levinson, 2011). As a basic
example, giving a name to a color, such as red, provides a tool to describe a visual feature of an object.
In addition to the words which describe the direct sensorial features of objects, languages include many
other lexical items that are connected to sense modalities in various semantic roles. For instance, while
some words can be used to describe a perception activity (e.g., to smell, to gaze, to listen), others can
simply be physical phenomenons that can be perceived by sensory receptors (e.g., flower, fire, sugar).
Common usage of language can be very dense in terms of sensorial words. As an example, the sentence

“I tasted a delicious soup.” contains three sensorial words: to taste as a perception activity, delicious as
a perceived sensorial feature and soup as a physical phenomenon. While we, as humans, have the ability
to connect words with senses intuitively by using our commonsense knowledge, it is not straightforward
for machines to interpret sensorial information.
From a computational point of view, a sensorial lexicon could be useful for many scenarios. Rodriguez-

Esteban and Rzhetsky (2008) report that using words related to human senses in a piece of text could
clarify the meaning of an abstract concept by facilitating a more concrete imagination. Based on this
result, an existing text could be automatically modified with sensory words for various purposes such
as attracting attention or biasing the audience towards a specific concept. In addition, sensory words
can be utilized to affect private psychology by inducing a positive or negative sentiment (Majid and
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Levinson, 2011). As an example, de Araujo et al. (2005) show that the pleasantness level of the same
odor can be altered by labeling it as body odor or cheddar cheese. As another motivation, the readability
and understandability of text could also be enhanced by using sensory words (Rodriguez-Esteban and
Rzhetsky, 2008).
Yet another area which would benefit from such a resource is advertisement especially by using synaes-

thesia1, as it reinforces creative thinking and it is commonly exploited as an imagination boosting tool in
advertisement slogans (Pricken, 2008). As an example, we can consider the slogans “Taste the rainbow”
where the sense of sight is combined with the sense of taste or “Hear the big picture” where sight and
hearing are merged.
There are various studies both in computational linguistics and cognitive science that build resources

associating words with several cognitive features such as abstractness-concreteness (Coltheart, 1981;
Turney et al., 2011), emotions (Strapparava and Valitutti, 2004; Mohammad and Turney, 2010), colors
(Özbal et al., 2011; Mohammad, 2011) and imageability (Coltheart, 1981). However, to the best of our
knowledge, there is no attempt in the literature to build a resource that associates words with senses.
In this paper, we propose a computational method to automatically generate a sensorial lexicon2 that
associates words in English with senses. Our method consists of two main steps. First, we generate the
initial seed words for each sense category with the help of a bootstrapping approach. Then, we exploit a
corpus based probabilistic technique to create the final lexicon. We evaluate this resource with the help
of a gold standard that we obtain by using the crowdsourcing service provided by CrowdFlower3.
The sensorial lexicon embodies 22,684 English lemmas together with their part-of-speech (POS) in-

formation that have been linked to one or more of the five senses. Each entry in this lexicon consists of a
lemma-POS pair and a score for each sense that indicates the degree of association. For instance, the verb
stink has the highest score for smell as expected while the scores for the other four senses are very low.
The noun tree, which is a concrete object and might be perceived by multiple senses, has high scores for
sight, touch and smell.
The rest of the paper is organized as follows. We first review previous work relevant to this task in

Section 2. Then in Section 3, we describe the proposed approach in detail. In Section 4, we explain the
annotation process that we conducted and the evaluation strategy that we adopted. Finally, in Section 4,
we draw our conclusions and outline possible future directions.

2 Related Work

Since to the best of our knowledge there is no attempt in the literature to automatically associate words
with human senses, in this section we will summarize the most relevant studies that focused on linking
words with various other cognitive features.
There are several studies dealing with word-emotion associations. WordNet Affect Lexicon (Strap-

parava and Valitutti, 2004) maps WordNet (Fellbaum, 1998) synsets to various cognitive features (e.g.,
emotion, mood, behaviour). This resource is created by using a small set of synsets as seeds and expand-
ing them with the help of semantic and lexical relations among these synsets. Yang et al. (2007) propose
a collocation model with emoticons instead of seed words while creating an emotion lexicon from a cor-
pus. Perrie et al. (2013) build a word-emotion association lexicon by using subsets of a human-annotated
lexicon as seed sets. The authors use frequencies, counts, or unique seed words extracted from an n-
gram corpus to create lexicons in different sizes. They propose that larger lexicons with less accurate
generation method perform better than the smaller human annotated lexicons. While a major drawback
of manually generated lexicons is that they require a great deal of human labor, crowdsourcing services
provide an easier procedure for manual annotations. Mohammad and Turney (2010) generate an emotion
lexicon by using the crowdsourcing service provided by Amazon Mechanical Turk4 and it covers 14,200
term-emotion associations.

1American Heritage Dictionary (http://ahdictionary.com/) defines synaesthesia in linguistics as the description of one
kind of sense impression by using words that normally describe another.

2The sensorial lexicon is publicly available, upon request to the authors.
3http://www.crowdflower.com/
4http://www.mturk.com/mturk
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Regarding the sentiment orientations and subjectivity levels of words, Sentiwordnet (Esuli and Sebas-
tiani, 2006) is constructed as an extension toWordNet and it provides sentiments in synset level. Positive,
negative and neutral values are assigned to synsets by using ternary classifiers and synset glosses. An-
other study that has been inspirational for the design of our approach is Banea et al. (2008). The authors
generate a subjectivity lexicon starting with a set of seed words and then using a similarity measure among
the seeds and the candidate words.
Concerning the association between colors and words, Mohammad (2011) builds a color-word asso-

ciation lexicon by organizing a crowdsourcing task on Amazon Mechanical Turk. Instead, Özbal et al.
(2011) aim to automate this process and propose three computational methods based on image analysis,
language models and latent semantic analysis (LSA) (Landauer and Dumais, 1997). The authors com-
pare these methods against a gold standard obtained by the crowdsourcing service of AmazonMechanical
Turk. The best performance is obtained by using image features while LSA performs slightly better than
the baseline.
Finally, there have been efforts in the literature about the association of words with their abstractness-

concreteness and imageability levels. MRC Psycholinguistic Database (Coltheart, 1981) includes
abstractness-concreteness and imageability ratings of a small set of words determined according to psy-
cholinguistic experiments. Turney et al. (2011) propose to use LSA similarities of words with a set of
seed words to automatically calculate the abstractness and concreteness degrees of words.

3 Automatically Associating Senses with Words

We adopt a two phased computational approach to construct a large sensorial lexicon. First, we employ a
bootstrapping strategy to generate a sufficient number of sensory seed words from a small set of manually
selected seed words. In the second phase, we perform a corpus based probabilistic method to estimate
the association scores to build a larger lexicon.

3.1 Selecting Seed Words

The first phase of the lexicon construction process aims to collect sensorial seed words, which are directly
related to senses (e.g., sound, tasty and sightedness). To achieve that, we utilized a lexical database called
FrameNet (Baker et al., 1998), which is built upon semantic frames of concepts in English and lexical
units (i.e., words) that evoke these frames. The basic idea behind this resource is that meanings of words
can be understood on the basis of a semantic frame. A semantic frame consists of semantic roles called
frame elements, which are manually annotated in more than 170,000 sentences. We have considered
FrameNet to be especially suitable for the collection of sensorial seed words since it includes semantic
roles and syntactic features of sensational and perceptional concepts.
In order to determine the seed lemma-POS pairs in FrameNet, we first manually determined 31

frames that we found to be highly connected to senses such as Hear, Color, Temperature and Percep-
tion_experience. Then, we conducted an annotation task and asked 3 annotators to determine which
senses the lemma-POS pairs evoking the collected frames are associated with. At the end of this task, we
collected all the pairs (i.e., 277) with 100% agreement to constitute our initial seed set. This set contains
277 lemma-POS pairs associated with a specific sense such as the verb click with hearing, the noun glitter
with sight and aromatic with smell.

3.2 Seed Expansion via Bootstrapping

In this step, we aim to extend the seed list that we obtained from FrameNet with the help of a bootstrapping
approach. To achieve that, we adopt a similar approach to Dias et al. (2014), who propose a repetitive
semantic expansion model to automatically build temporal associations of synsets in WordNet. Figure 1
provides an overview of the bootstrapping process. At each iteration, we first expand the seed list by
using semantic relations provided by WordNet. We then evaluate the accuracy of the new seed list for
sense classification by means of cross-validation against WordNet glosses. For each sense, we continue
iterating until the cross-validation accuracy becomes stable or starts to decrease. The following sections
explain the whole process in detail.
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Figure 1: Bootstrapping procedure to expand the seed list.

Extending the Seed List with WordNet
While the initial sensory seed list obtained fromFrameNet contains only 277 lemma-POS pairs, we extend
this list by utilizing the semantic relations provided by WordNet. To achieve that, we first map each
lemma-POS pair in the seed list to WordNet synsets with the help of MapNet (Tonelli and Pighin, 2009),
which is a resource providing directmapping betweenWordNet synsets and FrameNet lexical units. Then,
we add to the list the synsets that are in WordNet relations direct antonymy, similarity, derived-from,
derivationally-related, pertains-to, attribute and also-see with the already existing seeds. For instance,
we add the synset containing the verb laugh for the synset of the verb crywith the relation direct antonymy,
or the synset containing the adjective chilly for the synset of the adjective cold with the relation similarity.
We prefer to use these relations as they might allow us to preserve the semantic information as much as
possible during the extension process. It is worth mentioning that these relations were also found to be
appropriate for preserving the affective connotation by Valitutti et al. (2004). Additionally, we use the
relations hyponym and hyponym-instance to enrich the seed set with semantically more specific synsets.
For instance, for the noun seed smell, we expand the list with the hyponyms of its synset such as the
nouns bouquet, fragrance, fragrancy, redolence and sweetness.

Cross-validation for Sensorial Model
After obtaining new synsets with the help of WordNet relations in each bootstrapping cycle, we build a
five-class sense classifier over the seed synsets defined by their glosses provided in WordNet. Similarly
to Dias et al. (2014), we assume that the sense information of sensorial synsets is preserved in their
definitions. Accordingly, we employ a support vector machine (SVM) (Boser et al., 1992; Vapnik, 1998)
model with second degree polynomial kernel by representing the gloss of each synset as a vector of
lemmas weighted by their counts. For each synset, its gloss is lemmatized by using Stanford Core NLP5
and cleaned from the stop words. After each iteration cycle, we perform a 10-fold cross-validation in the
updated seed list to detect the accuracy of the new sensorial model. For each sense class, we continue
iterating and thereby expanding the seed list until the classifier accuracy steadily drops.
Table 1 lists the precision (P), recall (R) and F1 values obtained for each sense after each iteration until

the bootstrapping mechanism stops. While the iteration number is provided in the first column, the values
under the last column group present the micro-average of the resulting multi-class classifier. The change
in the performance values of each class in each iteration reveal that the number of iterations required to
obtain the seed lists varies for each sense. For instance, the F1 value of touch continues to increase until
the fourth cycle whereas hearing records a sharp decrease after the first iteration.
After the bootstrapping process, we create the final lexicon by repeating the expansion for each class

until the optimal number of iterations is reached. The last row of Table 1, labeled as Final, demonstrates
the accuracy of the classifier trained and tested on the final lexicon, i.e., using the seeds selected after
iteration 2 for Sight, iteration 1 for Hearing, iteration 3 for Taste and Smell and iteration 4 for Touch.

5http://nlp.stanford.edu/software/corenlp.shtml
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Sight Hearing Taste Smell Touch Micro-average
It# P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

1 .873 .506 .640 .893 .607 .723 .716 .983 .828 .900 .273 .419 .759 .320 .451 .780 .754 .729
2 .666 .890 .762 .829 .414 .552 .869 .929 .898 .746 .473 .579 .714 .439 .543 .791 .787 .772
3 .643 .878 .742 .863 .390 .538 .891 .909 .900 .667 .525 .588 .720 .482 .578 .796 .786 .776
4 .641 .869 .738 .832 .400 .540 .866 .888 .877 .704 .500 .585 .736 .477 .579 .784 .774 .765
5 .640 .869 .737 .832 .400 .540 .866 .888 .877 .704 .500 .585 .738 .474 .578 .784 .774 .764

Final .805 .827 .816 .840 .408 .549 .814 .942 .873 .685 .534 .600 .760 .582 .659 .800 .802 .790

Table 1: Bootstrapping cycles with validation results.

According to F1 measurements of each iteration, while hearing and taste have a lower value for the final
model, sight, smell and touch have higher results. It should also be noted that the micro-average of the F1
values of the final model shows an increase when compared to the third iteration which has the highest
avarage F1 value among the iterations. At the end of this step we have a seed synset list consisting of
2572 synsets yielding the highest performance when used to learn a sensorial model.

3.3 Sensorial Lexicon Construction Using Corpus Statistics
After generating the seed lists consisting of synsets for each sense category with the help of a set of
WordNet relations and a bootstrapping process, we use corpus statistics to create our final sensorial lex-
icon. More specifically, we exploit a probabilistic approach based on the co-occurence of the seeds and
the candidate lexical entries. Since working on the synset level would raise the data sparsity problem in
synset tagged corpora such as SemCor (Miller et al., 1993) and we need a corpus that provides sufficient
statistical information, we migrate from synset level to lexical level. Accordingly, we treat each POS
role of the same lemmas as a distinct seed and extract 4287 lemma-POS pairs from 2572 synsets. In this
section, we explain the steps to construct our final sensorial lexicon in detail.

Corpus and Candidate Words
As a corpus, we use a subset of English GigaWord 5th Edition released by Linguistic Data Consortium
(LDC)6. This resource is a collection of almost 10million English newswire documents collected in recent
years, whose content sums up to nearly 5 billion words. The richly annotated GigaWord data comprises
automatic parses obtained with the Stanford parser (Klein and Manning, 2003) so that we easily have
access to the lemma and POS information of each word in the resource. For the scope of this study, we
work on a randomly chosen subset that contains 79800 sentences and we define a co-occurrence event as
the co-existence of a candidate word and a seed word within a window of 9 words (the candidate word,
4 words to its left and 4 words to its right). In this manner, we analyze the cooccurrence of each unique
lemma-POS pair in the corpus with the sense seeds. We eliminate the candidates which have less than 5
cooccurences with the sense categories.

Normalized Pointwise Mutual Information
For the cooccurrence analysis of the candidate words and seeds, we use pointwise mutual information
(PMI), which is simply a measure of association between the probability of the co-occurence of two
events and their individual probabilities when they are assumed to be independent (Church and Hanks,
1990) and it is calculated as:

PMI(x, y) = log
[

p(x, y)
p(x)p(y)

]
(1)

To calculate the PMI value of a candidate word and a specific sense, we consider p(x) as the probability
of the candidate word to occur in the corpus. Therefore, p(x) is calculated as p(x) = c(x)/N , where c(x)
is the total count of the occurences of the candidate word x in the corpus and N is the total cooccurrence
count of all words in the corpus. Similarly, we calculate p(y) as the total occurrence count of all the

6http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2011T07
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majority class 3 4 5 6 7 8 9 10

word 0 0.98 3.84 9.96 11.63 16.66 34.41 12.42
sentence 0.58 2.35 7.07 10.91 13.27 15.63 21.23 16.51

Table 2: Percentage of words and sentences in each majority class.

seeds for the sense considered (y). p(y) can thus be formulated as c(y)/N . p(x,y) is the probability of the
cooccurence of a candidate word x with a sense event y.
A major shortcoming of PMI is its sensitivity for low frequency data (Bouma, 2009). As one possible

solution, the author introduces Normalized Pointwise Mutual Information (NPMI), which normalizes the
PMI values to the range (-1, +1) with the following formula:

NPMI(x, y) =
PMI(x, y)
− log p(x, y)

(2)

We calculated NPMI values for each candidate word and five sense events in the corpus. The sensorial
lexicon covers 22,684 lemma-POS pairs and a score for each sense class that denotes their association
degrees.

4 Evaluation

To evaluate the performance of the sensorial classification and the quality of the lexicon, we first created
a gold standard with the help of a crowdsourcing task. Then, we compared the decisions coming from the
lexicon against the gold standard. In this section, we explain the annotation process that we conducted
and the evaluation technique that we adopted in detail. We also provide a brief discussion about the
obtained results.

4.1 Crowdsourcing to Build a Gold Standard
The evaluation phase of the sensorial lexicon requires a gold standard data to be able to conduct a mean-
ingful assessment. Since to our best knowledge there is no resource with sensory associations of words
or sentences, we designed our own annotation task using the crowdsourcing service CrowdFlower. For
the annotation task, we first compiled a collection of sentences to be annotated. Then, we designed two
questions that the annotators were expected to answer for a given sentence. While the first question is
related to the sense association of a whole sentence, the second asks the annotators the sense associations
of the words in the same sentence to collect a fine-grained gold standard.
We collected a dataset of 340 sentences consisting of 300 advertisement slogans from 11 advertisement

categories (e.g., fashion, food, electronics) and 40 story sentences from a story corpus. We collected the
slogans from various online resources such as http://slogans.wikia.com/wiki and http://www.
adslogans.co.uk/. The story corpus is generated as part of a dissertation research (Alm, 2008) and it
provides stories as a collection of sentences.
In both resources, we first determined the candidate sentences which had at least five tokens and con-

tained at least one adjective, verb or noun. In addition, we replaced the brand names in the advertisement
slogans with X to prevent any bias. For instance, the name of a well-known restaurant in a slogan might
cause a bias towards taste. Finally, the slogans used in the annotation task were chosen randomly among
the candidate sentences by considering a balanced number of slogans from each category. Similarly, 40
story sentences were selected randomly among the candidate story sentences. To give a more concrete
idea, for our dataset we obtained an advertisement slogan such as “X's Sugar Frosted Flakes They're
Great!” or a story sentence such as “The ground is frozen, and besides the snow has covered everything.”
In the crowdsourcing task we designed, the annotators were required to answer 2 questions for a given

sentence. In the first question, they were asked to detect the human senses conveyed or directly described
by a given sentence. To exemplify these cases, we provided two examples such as “I saw the cat” that
directly mentions the action of seeing and “The sun was shining on the blue water.” that conveys the sense
of sight by using visual descriptions or elements like “blue” or “shine” which are notable for their visual
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Category Si He Ta Sm To

personal care 49.36 10.75 0.00 13.29 26.58
travel 58.18 0.00 29.09 0.00 12.72
fashion 43.47 0.00 0.00 26.08 30.43
beauty 84.56 0.00 0.00 0.00 15.43
computing 32.25 59.13 0.00 0.00 8.60
food 0.00 5.46 94.53 0.00 0.00
beverages 22.68 0.00 59.79 0.00 17.52
communications 25.00 67.50 0.00 0.00 0.075
electronics 45.94 54.05 0.00 0.00 0.00
education 28.57 42.85 0.00 0.00 28.57
transport 61.81 38.18 0.00 0.00 0.00

story 58.37 20.81 0.00 7.23 13.57

Table 3: The categories of the annotated data and their sense association percentages.

properties. The annotators were able to select more than one sense for each sentence and together with
the five senses we provided another option as None which should be selected when an annotator could
not associate a sentence with any sense. The second question was devoted do determining word-sense
associations. Here, the annotators were expected to associate the words in each sentence with at least
one sense. Again, annotators could choose None for every word that they could not confidently associate
with a sense.

The reliability of the annotators was evaluated on the basis of 20 control sentences which were highly
associated with a specific sense and which included at least one sensorial word. For instance, for the con-
trol sentence “The skin you love to touch”, we only considered as reliable the annotators who associated
the sentence with touch and the word touch with the sense touch7. Similarly, for the slogan “The most
colourful name in cosmetics.”, an annotator was expected to associate the sentence with at least the sense
sight and the word colorful to at least the sense sight. The raters who scored at least 70% accuracy on
average on the control questions for the two tasks were considered to be reliable. Each unit was annotated
by at least 10 reliable raters.

Similarly to Mohammad (2011) and Özbal et al. (2011), we calculated the majority class of each anno-
tated item to measure the agreement among the annotators. Table 2 demonstrates the observed agreement
at both word and sentence level. Since 10 annotators participated in the task, the annotations with a ma-
jority class greater than 5 can be considered as reliable (Özbal et al., 2011). Indeed, for 85.10% of the
word annotations the absolute majority agreed on the same decision, while 77.58% of the annotations in
the sentence level have majority class greater than 5. The high agreement observed among the annotators
in both cases confirms the quality of the resulting gold standard data.

In Table 3, we present the results of the annotation task by providing the association percentage of each
category with each sense, namely sight (Si), hear (He), taste (Ta), smell (Sm) and touch (To). As demon-
strated in the table, while the sense of sight can be observed in almost every advertisement category and
in story, smell and taste are very rare. We observe that the story sentences invoke all sensorial modali-
ties except taste, although the percentage of sentences annotated with smell is relatively low. Similarly,
personal care category has an association with four of the senses while the other categories have either
very low or no association with some of the sense classes. Indeed, the perceived sensorial effects in the
sentences vary according to the category such that the slogans in the travel category are highly associated
with sight whereas the communication category is highly associated with hearing. While the connection
of the food and beverages categories with taste is very high as expected, they have no association with the
sense of smell. This kind of analysis could be useful for copywriters to decide which sensory modalities
to invoke while creating a slogan for a specific product category.

7If the annotators gave additional answers to the expected ones, we considered their answers as correct.

120



4.2 Evaluation Measures
Based on the annotation results of our crowdsourcing task, we propose an evaluation technique consider-
ing that a lemma-POS or a sentencemight be associated withmore than one sensorymodalities. Similar to
the evaluation framework defined by Özbal et al. (2011), we adapt the evaluation measures of SemEval-
2007 English Lexical Substitution Task (McCarthy and Navigli, 2007), where a system generates one or
more possible substitutions for a target word in a sentence preserving its meaning.
For a given lemma-POS or a sentence, which we will name as item in the rest of the section, we allow

our system to provide as many sensorial associations as it determines using a specific lexicon. While
evaluating a sense-item association of a method, a best and an oot score are calculated by considering
the number of the annotators who associate that sense with the given item, the number of the annotators
who associate any sense with the given item and the number of the senses the system gives as an answer
for that item. More specifically, best scoring provides a credit for the best answer for a given item by
dividing it to the number of the answers of the system. oot scoring, on the other hand, considers only a
certain number of system answers for a given item and does not divide the credit to the total number of
the answers. Unlike the lexical substitution task, a limited set of labels (i.e., 5 sense labels and none) are
allowed for the sensorial annotation of sentences or lemma-POS pairs. For this reason, we reformulate
out-of-ten (oot) scoring used by McCarthy and Navigli (2007) as out-of-two.
In Equation 3, best score for a given item i from the set of items I, which consists of the items annotated

with a specific sense by a majority of 5 annotators, is formulated whereHi is the multiset of gold standard
sense associations for item i and Si is the set of sense associations provided by the system. oot scoring,
as formulated in Equation 4, accepts up to 2 sense associations s from the answers of system Si for a
given item i and the credit is not divided by the number of the answers of the system.

best (i) =

∑
s∈Si

freq (s ∈ Hi)
|Hi| · |Si| (3)

oot (i) =

∑
s∈Si

freq (s ∈ Hi)
|Hi| (4)

As formulated in Equation 5, to calculate the precision of an item-sense association task with a specific
method, the sum of the scores (i.e., best or oot) for each item is divided by the number of items A, for
which the method can provide an answer. In recall, the denominator is the number of the items in the
gold standard for which an answer is given by the annotators.

P =
∑

i∈A scorei

|A| R =
∑

i∈I scorei

|I| (5)

4.3 Evaluation Method
For the evaluation, we compare the accuracy of a simple classifier based on the sensorial lexicon against
two baselines on a sense classification task, both at word and sentence level. To achieve that, we use
the gold standard that we obtain from the crowdsourcing task and the evaluation measures best and oot.
The lexicon-based classifier simply assigns to each word in a sentence the sense values found in the
lexicon. The first baseline simply assigns a random float value, which is in the range of (-1,1), to each
sense association of each lemma-POS pair in the sensorial lexicon. The second baseline instead builds
the associations by using a Latent Semantic Analysis space generated from the British National Corpus8
(BNC), which is a very large (over 100 million words) corpus of modern English. More specifically,
this baseline calculates the LSA similarities between each candidate lemma-POS pair and sense class
by taking the cosine similarity between the vector of the target lemma-POS pair and the average of the
vectors of the related sensory word (i.e., see, hear, touch, taste, and smell) for each possible POS tag.
For instance, to get the association score of a lemma-POS pair with the sense sight, we first average the
vectors of see (noun) and see (verb) before calculating its cosine similarity with the target lemma-POS
pair.

8http://www.hcu.ox.ac.uk/bnc/
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For the first experiment, i.e., word-sense association, we automatically associate the lemma-POS pairs
obtained from the annotated dataset with senses by using i) the sensorial lexicon, ii) the random baseline,
iii) the LSA baseline. To achieve that, we lemmatize and POS tag each sentence in the dataset by using
Stanford CoreNLP. In the end, for eachmethod and target word, we obtain a list of senses sorted according
to their sensorial association values in decreasing order. It is worth noting that we only consider the non-
negative sensorial associations for the sensorial lexicon and the random baseline, and the associations
above the value of 0.4 which we empirically set as the threshold for the LSA baseline. For instance,
the sensorial lexicon associates the noun wine with [smell, taste, sight]. In this experiment, best scoring
considers the associated senses as the best answer, smell, taste, sight according to the previous example,
and calculates a score with respect to the best answer in the gold standard and the number of the senses
in this answer. Instead, oot scoring takes the first two answers, smell and taste according to the previous
example, and assigns the score accordingly.
To determine the senses associated with a sentence for the second experiment, we use a method similar

to the one proposed by Turney (2002). For each sense, we simply calculate the average score of the
lemma-POS pairs in a sentence. We set a threshold value of 0 to decide whether a sentence is associated
with a given sense. In this manner, we obtain a sorted list of average sensory scores for each sentence
according to the three methods. For instance, the classifier based on the sensorial lexicon associates the
sentence Smash it to pieces, love it to bits. with [touch, taste]. For the best score, only touch would be
considered, whereas oot would consider both touch and taste.

4.4 Evaluation Results
In Table 4, we list the F1 values that we obtained with the classifier using the sensorial lexicon and the
two baselines (Random and LSA) according to both best and oot measures. In addition, we provide
the performance of the sensorial lexicon in two preliminary steps, before bootstrapping (BB) and after
bootstrapping (AB) to observe the incremental progress of the lexicon construction method. As can be
observed from the table, the best performance for both experiments is achieved by the sensorial lexicon
when compared against the baselines.
While in the first experiment the lexicon generated after the bootstrapping step (AB) provides a very

similar performance to the final lexicon according to the bestmeasure, it can only build sense associations
for 69 lemmas out of 153 appearing in the gold standard. Instead, the final lexicon attempts to resolve
129 lemma-sense associations and results in a better recall value. Additionally, AB yields a very high
precision as expected, since it is created by a controlled semantical expansion from manually annotated
sensorial words. The LSA baseline slightly improves the random baseline according to both best and oot
measures and it also outperforms BB for oot. BB lexicon includes only 573 lemmas which are collected
from 277 synsets and we can not obtain 2 sense association scores for oot in this lexicon since each lemma
is associated with only one sense with a value of 1.
Concerning the sentence classification experiment, the classifier using the sensorial lexicon yields the

highest performance in bothmeasures. The very high F1 value obtained with the oot scoring indicates that
the right answer for a sentence is included in the first two decisions in many cases. The low performance
of the LSA baseline might be arising due to its tendency to link the sentences with the sense of touch (i.e.,
215 sentences out of 320 gold standard data). It would be interesting to see the impact of using another
corpus to build the LSA space and constituting the sense vectors differently.
After the manual analysis of the sensorial lexicon and gold standard data, we observe that the sensorial

classification task could be nontrivial. For instance, a story sentence “He went to sleep again and snored
until the windows shook.” has been most frequently annotated as hearing. While the sensorial lexicon
classifier associates this sentence with touch as the best answer, it can provide the correct association
hearing as the second best answer. To find out the best sensorial association for a sentence, a classification
method which exploits various aspects of sensorial elements in a sentence, such as the number of sensorial
words or their dependencies, could be a better approach than using only the average sensorial values.
Based on our observations in the error cases, the advertisement slogan “100% pure squeezed sunshine”

is associated with touch as the best answer by both the sensorial lexicon and LSA baseline while it is most
frequently annotated as sight in the gold standard. This slogan is an example usage of synaesthesia and
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Lemma Sentence
Model best oot best oot

Random 21.10 37.59 21.10 37.59
LSA 26.35 37.60 31.01 37.63

Lexicon-BB 45.22 45.22 49.60 51.12
Lexicon-AB 55.85 55.85 59.89 63.21
Sensorial Lexicon 55.86 80.13 69.76 80.73

Table 4: Evaluation results.

metaphors in advertising language. To clarify, a product from the category of beverages, which might be
assumed to have a taste association, is described by a metaphorical substitution of a taste-related noun,
most probably the name of a fruit, with a sight-related noun; sunshine. This metaphorical substitution,
then used as the object of a touch-related verb, to squeeze, produces a synaesthetic expression with touch
and sight.

5 Conclusion

In this paper we have presented a computational method to build a lexicon that associates words with
senses by employing a two-step strategy. First, we collected seed words by using a bootstrapping ap-
proach based on a set of WordNet relations. Then, we performed a corpus based statistical analysis to
produce the final lexicon. The resulting sensorial lexicon consists of 22,684 lemma-POS pairs and their
association degrees with five sensory modalities. To our best knowledge, this is the first systematic at-
tempt to build a sensorial lexicon and we believe that our contribution constitutes a valid starting point
for the community to consider sensorial information conveyed by text as a feature for various tasks and
applications. The results that we obtain by comparing our lexicon against the gold standard are promis-
ing even though not conclusive. The results confirm the soundness of the proposed approach for the
construction of the lexicon and the usefulness of the resource for text classification and possibly other
computational applications.
As future work, we would like to explore the effect of using different kinds of WordNet relations dur-

ing the bootstrapping phase. It would also be interesting to experiment with relations provided by other
resources such as ConceptNet (Liu and Singh, 2004), which is a semantic network containing common
sense, cultural and scientific knowledge. We would also like to use the sensorial lexicon for various
applicative scenarios such as slanting existing text towards a specific sense with text modification. We
believe that our resource could be extremely useful for automatic content personalization according to
user profiles. As an example, one can imagine a system that automatically replaces hearing based ex-
pressions with sight based ones in pieces of texts for a hearing-impaired person. Finally, we plan to
investigate the impact of using sensory information for metaphor detection and interpretation based on
our observations during the evaluation.
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