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Abstract

Short answer scoring systems typically use
regular expressions, templates or logic expres-
sions to detect the presence of specific terms
or concepts among student responses. Pre-
vious work has shown that manually devel-
oped regular expressions can provide effective
scoring, however manual development can be
quite time consuming. In this work we present
a new approach that uses word-order graphs
to identify important patterns from human-
provided rubric texts and top-scoring student
answers. The approach also uses semantic
metrics to determine groups of related words,
which can represent alternative answers. We
evaluate our approach on two datasets: (1) the
Kaggle Short Answer dataset (ASAP-SAS,
2012), and (2) a short answer dataset provided
by Mohler et al. (2011). We show that our
automated approach performs better than the
best performing Kaggle entry and generalizes
as a method to the Mohler dataset.

1 Introduction

In recent years there has been a significant rise in the
number of approaches used to automatically score
essays. These involve checking grammar, syntax
and lexical sophistication of student answers (Lan-
dauer et al., 2003; Attali and Burstein, 2006; Foltz et
al., 2013). While essays are evaluated for the qual-
ity of writing, short answers are brief and evoke very
specific responses (often restricted to specific terms
or concepts) from students. Hence the use of fea-
tures that check grammar, structure or organization
may not be sufficient to grade short answers.

Regular expressions, text templates or patterns
have been used to determine whether a student an-
swer matches a specific word or a phrase present
in the rubric text. For example, Moodle (2011) al-
lows for the use of a “Regular Expression Short-
Answer question” type which allows instructors or
question developers to code correct answers as reg-
ular expressions. Consider the question: “What are
blue, red and yellow?” This question can evoke a
very specific response: “They are colors.” How-
ever, there are several ways (with the term “color”
spelled differently, for instance) to answer this
question. E.g. (1) they are colors; (2) they
are colours; (3) they’re colours; (4) they’re col-
ors; (5) colours; or (6) colors. Instead of having
to enumerate all the alternatives to this question,
the answer can be coded as a regular expression:
(they(’|\s(a))re\s)?colo(u)?rs.

Manually generated regular expressions have
been used as features in generating models that score
short answers in the Kaggle Short Answer Scoring
competition (ASAP-SAS, 2012). Tandalla (2012)’s
approach, the best performing one of the competi-
tion, achieved a Quadratic Weighted (QW) Kappa
of 0.70 using just regular expressions as features.
However, regular expression generation can be te-
dious and time consuming, and the performance of
these features is constrained by the ability of humans
to generate good regular expressions. Automating
this approach would ensure that the process is re-
peatable, and the results consistent.

We propose an approach to identify patterns to
score short answers using the rubric text and top-
scoring student responses. The approach involves
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(1) identification of classes of semantically related
words or phrases that a human evaluator would ex-
pect to see among the best answers, and (2) com-
bining these semantic classes in a meaningful way
to generate patterns. These patterns help capture the
main concepts or terms that are representative of a
good student response. We use a word order graph
(Ramachandran and Gehringer, 2012) to represent
the rubric text. The graph captures order of tokens
in the text. We use a lexico-semantic matching tech-
nique to identify the degree of relatedness across to-
kens or phrases. The matching process helps iden-
tify alternate ways of expressing the response.

An answer containing the text diet
of koalas would be coded as follows:
(?=.*(diet|eat(s)?|grub).*) of (?=
.*(koala(s)?|koala|opossum).*). The
patterns generated contain (1) positional constraints
(?=, which indicates that the search for the text
should start at the beginning, and (2) the choice
operator (|), which captures alternate ways of
expressing the same term, e.g. diet or eat or
grub. We look for match (or non-match) between
the set of generated patterns and new short answers.

We evaluate our patterns on short answers from
the Kaggle Automated Student Assessment Prize
(ASAP) competition, the largest publicly available
short answer dataset (Higgins et al., 2014). We com-
pare our results with the those from the competi-
tion’s best model, which uses manually generated
regular expressions. Our aim with this experiment
is to demonstrate that automatically generated pat-
terns produce results that are comparable to man-
ually generated patterns. We also tested our ap-
proach on a different short answer dataset curated
by Mohler et al. (2011).

One of the main contributions of this paper is the
use of an automated approach to generate patterns
that can be used to grade short answers effectively,
while spending less time and effort. The rest of this
paper is organized as follows: Section 2 discusses
related work that use manually constructed patterns
or answer templates to grade student responses. Sec-
tion 3 contains a description of our approach to au-
tomatically generate patterns to grade short answers.
Sections 4 and 5 discuss the experiments conducted
to evaluate the performance of our patterns in scor-
ing short answers. Section 6 concludes the paper.

2 Related Work

Leacock and Chodorow (2003) developed the use of
a short-answer scoring system called C-rater, which
focuses on semantic information in the text. They
used a paraphrase-recognition based approach to
score answers.

Bachman et al. (2002) proposed the use of a short
answer assessment system called WebLAS. They
extracted regular expressions from a model answer
to generate the scoring key. Regular expressions are
formed with exact as well as near-matches of words
or phrases. Student answers are scored based on
the degree of match between the answer and scor-
ing key. Unlike Bachman et al., we do not use pat-
terns to directly match and score student answers.
In our approach, text patterns are supplied as fea-
tures to a learning algorithm such as Random For-
est (Breiman, 2001) in order to accurately predict
scores.

Mitchell et al. (2003) used templates to identify
the presence of sample phrases or keywords among
student responses. Marking schemes were devel-
oped based on keys specified by human item de-
velopers. The templates contained lists of alter-
native (stemmed) tokens for a word or phrase that
could be used by the student. Pulman and Sukkarieh
(2005) used hand-coded patterns to capture different
ways of expressing the correct answer. They auto-
mated the approach of template creation, but the au-
tomated ones did not outperform the manually gen-
erated templates. Makatchev and VanLehn (2007)
used manually encoded first-order predicate repre-
sentations of answers to score responses.

Brill et al. (2002) reformulated queries as declar-
ative sentence segments to aid query-answer match-
ing. Their approach worked under the condition
that the (exact) content words appearing in a query
would also appear in the answer. Consider the sam-
ple query “When was the paper clip invented?”, and
the sample answer: “The paper clip is a very useful
device. It was patented by Johan Vaaler in 1899.”
The word patented is related in meaning to the term
invented, but since the exact word is not used in the
query, it will not match the answer. We propose
a technique that uses related words as part of the
patterns in order to avoid overlooking semantically
close matches.
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Figure 1: An overview of the approach.

3 Approach

In this section we describe our approach to auto-
matically identify text patterns that are representa-
tive of the best answers. We automatically generate
two types of patterns containing: (1) content words
and (2) sentence structure information. We use the
rubric text provided to human graders and a set of
top-scored student answers as the input data to gen-
erate patterns. Top-scoring responses are those that
receive the highest human grades. In our implemen-
tation we use the top-scored answers from the train-
ing set only. Figure 1 depicts an overview of our
approach to automate pattern generation.1,2

3.1 Extracting Content Tokens

We rewrite the rubric text in order to generate a
string of content words that represent the main
points expected to appear in the answer. The aim
of our approach is to generate patterns with no man-
ual intervention. The re-writing of the rubric is also
done automatically. It involves the removal of stop-
words while retaining only content tokens.

We eliminate stopwords and function words in the
text and retain only the important prompt-specific
content words. Short answer scoring relies on the
presence or absence of specific tokens in the stu-
dent’s response. Content tokens are extracted from
sample answers, and the tokens are grouped together
without taking the order of tokens into considera-
tion.

Students may use words different from those used
in the rubric (e.g. synonyms or other semantically
related words or phrases). Therefore we have to

1Prompt: Writing prompt provided to help guide students.
2Stimulus: Text presented to students, in addition to the

writing prompt, to provide further writing guidance.

identify groups of words or phrases that are semanti-
cally related. In order to extract semantically similar
words specific to the prompt’s vocabulary, we look
for related tokens in top-scoring answers as well as
in the prompt and stimulus texts.

3.1.1 Semantic Relatedness Metric
We use WordNet (Fellbaum, 1998) to determine

the degree of semantic match between tokens be-
cause it is faster to query than a knowledge resource
such as Wikipedia. WordNet has been used success-
fully to measure relatedness by Agirre et al. (2009).

Match between two tokens could be one of: (1)
exact, (2) synonym3, (3) hypernym or hyponym
(more generic or specific), (4) meronym or holonym
(sub-part or whole) (5) presence of common parents
(excluding generic parents such as object, entity),
(6) overlaps across definitions or examples of tokens
i.e., using context to match tokens, or (7) distinct or
non-match. Each of these matches expresses differ-
ent degrees of semantic relatedness across compared
tokens. The seven types of matches are weighted on
a scale of 0 to 6. An exact match gets the highest
weight of 6, a synonym match gets a weight of 5
and so on, and a distinct or non-match gets the least
weight of 0.

In the pattern (?=.*(larg(e)?|size|vol-
um(e)?).*)(?=.*(dry).*)(?=.*(surf-
ace).*), the set (?=.*(larg(e)?|size|vo-
lum(e)?).*) contains semantically related al-
ternatives. The pattern looks for the presence of
three tokens: any one of the tokens within the first
(?=.*· · ·*) and tokens dry and surface. These
tokens do not have to appear in any particular order
within the student answer. A combination of these
tokens should be present in a student answer for it to
get a high score. Steps involved in generating con-
tent tokens based patterns for the text “size or type
of container to use” are described in Algorithm 1.

3.2 Extracting Phrase Patterns

In order to capture word order in the rubric text we
extract subject–verb, verb–object, adjective–noun,
adverb–verb type structures from the sample an-
swers. The extraction process involves generation of

3We use the part-of-speech of a token to extract the synset
from WordNet. This, to an extent, helps disambiguate the sense
of a token.
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Input: Rubric text, top-scoring answers, and prompt
and stimulus texts (if available)

Output: Patterns containing unordered content
words.

for each sentence in the rubric text do
/* Rubric text: "size or type
of container to use" */
1. Remove stopwords or relatively common
words.
/* Output: size type container
use*/
2. Rank tokens in top-scoring answers, and
prompt and stimulus texts based on their
frequency, and select the top most frequent
tokens.
/* size container type*/
3. Identify classes of alternate tokens, for each
rubric token, from among most frequent tokens
(from Step 2).
/* {size, large, mass, thing,
volume} {container, cup,
measure} {type, kind}*/
4. Stem words and use the suffix as an
alternative
/* container→ (stem: contain,
suffix: er) →contain(er)?/
5. Generate the pattern by AND-ing each of the
classes of words.
/* (?=.*(large|mass|size|thing|
volume).*)(?=.*(contain(er)?|cup|
measure).*)(?=.*(kind|type).*)

end
Algorithm 1: Generating patterns containing un-
ordered content tokens.

word-order graph representations for the sample an-
swers, and extracting edges representing structural
relations listed above.
Generating word-order graphs: We use word-
order graphs to represent text because they contain
the ordering of words or phrases, which helps cap-
ture context information. Context is not available
when using just unigrams.

Word graphs have been found to be useful for the
task of determining a review’s relevance to the sub-
mission. Word-order graphs’ f-measure on this task
is 0.687, while that of dependency graphs is 0.622
(Ramachandran and Gehringer, 2012). No approach
is highly accurate, but word graphs work well for
this task.

Structure information is crucial in a pattern-

Figure 2: Word-order graphs for texts (A) “Generalists
are favored over specialists” and (B) “The paper pre-
sented important concepts.” Edges in a word-order graph
maintain ordering information, e.g. generalists–are fa-
vored, paper–presented, important–concepts.

Input: Rubric text, top-scoring answers, and prompt
and stimulus texts (if available)

Output: Patterns containing ordered word phrases.
for each sentence in the rubric text do

/* Rubric text: "· · ·particles
like sodium, potassium ions into
membranes· · ·"
1. Generate word-order graphs from the text,
and extract edges from the word-order graph.
/* The extracted segment:
particles like--sodium
potassium--ions into membranes.
Graph edges are connected with a
"--"
2. Replace stopwords or function words with
\w{0,4}.
/* The segment becomes:
particles(\s\w{0,4}\s){0,1} sod-
ium potassium ions(\s\w{0,4}\s)
{0,1}membranes
3. Rank tokens in top-scoring answers and
prompt and stimulus texts based on their
frequency, and select the top most frequent
tokens.
4. Identify class of alternate tokens, for each
rubric token, from among most frequent tokens.
5. Add all synonyms of the rubric token from
WordNet to the class of alternatives.
/* E.g. class of alternate
tokens for sodium: {potassium,
bismuth, zinc, cobalt},
for potassium: {tungsten, zinc,
calcium, iron, aluminum, tin},
for membrane: {film, sheet}
6. Stem words and generate pattern by AND-ing
all classes of words.

end
Algorithm 2: Generating patterns containing sen-
tence structure or phrase pattern information.
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generation approach since some short answers may
capture relational information. Consider the answer:
“Generalists are favored over specialists”, to a ques-
tion on the differences between generalists and spe-
cialists. A pattern that does not capture order of
terms in the text will not capture the relation that ex-
ists between “generalists” and “specialists”. Figure
2(A) contains the graph representation for this text.

During graph generation, each sample text is
tagged with parts-of-speech (POS) using the Stan-
ford POS tagger (Toutanova et al., 2003), to help
identify nouns, verbs, adjectives, adverbs etc. For
each sample text consecutive noun components,
which include nouns, prepositions, conjunctions and
Wh-pronouns are combined to form a noun vertex.
Consecutive verbs (or modals) are combined to form
a verb vertex; similarly with adjectives and adverbs.
When a noun vertex is created the generator looks
for the last created verb vertex to form an edge be-
tween the two. When a verb vertex is found, the
algorithm looks for the latest noun vertex to create
a noun–verb edge. Ordering is maintained when an
edge is created i.e., if a verb vertex was formed be-
fore a noun vertex a verb–noun edge is created, else
a noun–verb edge is created. A detailed description
of the process of generating word-order graphs is
available in Ramachandran and Gehringer (2012).

For this experiment we do not use dense repre-
sentations of words (e.g. Latent Semantic Analy-
sis (LSA) (Landauer, 2006)) because they are ex-
tracted from a large, general corpus and tend to ex-
tend the meaning of words to other domains (Foltz
et al., 2013). In place of a dense representation we
use word-order graphs, since they capture order of
phrases in a text.

Substituting stopwords with regular expressions:
Stopwords or function words in the extracted
word phrases are replaced with the regular expres-
sion (\s\w{0,x}\s){0,n} where x indicates the
length of the stopwords or function words, and n
indicates the number of stopwords that appear con-
tiguously. We use x=4, and n can be determined
while parsing the text. We allow for 0 occurrences
of stopwords (in {0,n}) between content tokens.
Some students may not write grammatically correct
or complete answers, but the answer might still con-
tain the right order of the remaining content words,

which helps them earn a high score.
Identifying semantic alternatives for content
words: Just as in the case of tokens-based patterns
(Section 3.1), semantically related words are iden-
tified to accommodate alternative responses (relat-
edness metric described in Section 3.1.1). Tokens
in top-scoring answers and prompt texts are ranked
based on their frequency, and the most frequent to-
kens are selected for comparison with words in the
rubric text. Apart from that we also add other syn-
onyms of the token to the class of related terms. For
instance some synonyms of the token droplets
are raindrops, drops, which are added to its
class of semantically related words.

Stemming accommodates typos, the use of wrong
tenses as well as the use of morphological variants
of the same term (containing singular-plural or nom-
inalized word forms). For instance if “s” is missed in
“drops”, it is handled by the expression “drop(s)?”.
These are correctly spelled variants of the same to-
ken. We use Porter (1980) stemmer to stem words.
The final class of words from the example above
looks as follows: {droplet(s)?, driblet,
raindrop(s)?, drop(s)?}. Humans tend
to overlook typos as well as difference in tenses.
Therefore the trailing “s” is considered optional.

Algorithm 2 describes steps involved in ex-
tracting phrase patterns from a sample answer
“· · ·particles like sodium, potassium ions into
membranes· · ·”. Output of Algorithm 2 is:
particles(\s\w{0,4}\s){0,1}(?=.*(sod-
ium|potassium|bismuth|zinc|cobalt).*)
(?=.*(potassium|tungsten|zinc|calcium
|iron|aluminum|tin).*)ions(\s\w{0,4}\s)
{0,1}(?=.*(membrane|film|sheet).*).
These patterns are also flexible like the token-based
ones (with the presence of positional constraints),
but it expects content words such as particles,
sodium, potassium, ions and membrane
to appear in the text, in that order.

4 Kaggle Short Answer Dataset

The aim of the Kaggle ASAP Short Answer Scor-
ing competition was to identify tools that would help
score answers comparable to humans (ASAP-SAS,
2012). Short answers along with prompt texts (and
in some cases sample answers) were made avail-
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able to competitors. The dataset contains 10 differ-
ent prompts scored on either a scale of 0–2 or 0–
3. There were a total of 17207 training and 5224
test answers. Around 153 teams participated in the
competition. The metric used for evaluation is QW
Kappa. The human benchmark for the dataset was
0.90. The best team achieved a score of 0.77.

4.1 Tandalla’s Approach

Tandalla (2012)’s was the best performing model at
the ASAP-Short Answer Scoring competition. One
of the important aspects of Tandalla’s approach was
the use of manually coded regular expressions to de-
termine whether a short answer matches (or does
not match) a sample pattern. Specific regular ex-
pressions were developed for each prompt set, de-
pending on the type of answers each set evoked (e.g.
presence of words such as “alligator”, “generalist”,
“specialist” etc. in the text). These patterns were
entirely hand-coded, which involved a lot of man-
ual effort. Tandalla built a Random Forest model
with the regular expressions as features. This model
alone achieved a QW Kappa of 0.70. Tandalla also
manually labeled answers to indicate match with the
rubric text. A detailed description of the best per-
forming approach is available in Tandalla (2012).

4.2 Experiment

Our aim with this experiment is to compare system-
generated patterns with Tandalla’s manually gen-
erated regular expressions. The goal is to deter-
mine the scoring performance of automated patterns,
while keeping everything (but the regular expres-
sions) in the best performing approach’s code con-
stant.

We substituted the manual regular expressions
used by Tandalla in his code with the automated pat-
terns. We then ran Tandalla’s code to generate the
models and obtain predictions for the test set. We
evaluate our approach on each of the 10 prompt sets
from the Kaggle short answer dataset.

The final predictions produced by Tandalla’s code
is the average of four learning models’ (two Ran-
dom Forests and two Gradient Boosting Machines)
predictions. The learners were used to build regres-
sion (and not discrete) models. We used content to-
kens and phrase patterns to generate two sets of pre-
dictions, one for each run of Tandalla’s code. We

stacked the output by taking the average of the two
sets of predictions.

We compare our model with the following:

1. Tandalla’s model with manually generated reg-
ular expressions: This is the gold standard,
since manual regular expressions were a part of
the best performing model.

2. Tandalla’s model with no regular expressions:
This model constitutes a lower baseline since
the absence of any regular expressions should
cause the model to perform worse. Since the
code expects Boolean regular expression fea-
tures as inputs, we generated a single dummy
regular expression feature with all values as 0
(no match).

4.3 Results
From Table 1 we see that Tandalla’s base code along
with our patterns’ stacked output performs better
than the manual regular expressions. On 8 out of
the 10 sets our patterns perform better than the man-
ual regular expressions. Their performance on the
remaining 2 sets is better than that of the lower base-
line i.e., Tandalla’s code with no regular expressions.

The mean QW Kappa achieved by our patterns is
0.78 and that achieved by Tandalla’s manual regular
expressions is 0.77. Although the QW Kappas are
very close (i.e. the difference is not statistically sig-
nificant), their unrounded difference of 0.00530 is
noteworthy as per Kaggle competition’s standards.
For instance the difference between the first and sec-
ond place teams (Luis Tandalla and Jure Zbontar) in
the competition is 0.00058.4

4.4 Analysis of Behavior of Regular
Expressions

While the overall performance of the automated reg-
ular expressions is better than Tandalla’s manual
regular expressions, there are some aspects that it
may be lacking in when compared with the manual
regular expressions.

In the case of Sets 5 and 7, the stacked model per-
forms worse than the model that uses manual regu-
lar expressions. This indicates that the manual reg-
ular expressions play a very important role for these

4Kaggle Public Leaderboard https://www.kaggle.
com/c/asap-sas/leaderboard/public
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Table 1: Comparing performance of models on the test set from the Kaggle ASAP competition. The table contains
QW Kappas for each of the ten prompts in the dataset. AutoP: Stacked patterns model. Tandalla’s: Tandalla’s model
with manually generated regular expressions; Baseline: Tandalla’s model with no regular expressions.

Approach Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Mean
AutoP 0.86 0.78 0.66 0.70 0.84 0.88 0.66 0.63 0.84 0.79 0.78
Tandalla’s 0.85 0.77 0.64 0.65 0.85 0.88 0.69 0.62 0.84 0.78 0.77
Baseline 0.82 0.76 0.64 0.66 0.80 0.86 0.63 0.59 0.82 0.76 0.75

prompts. In the case of set 5, the prompt evokes
information on the movement of mRNA across the
nucleus and ribosomes. We found that:

1. The answers discuss the movement of mRNA
in a certain direction, e.g. out of (exit) the nu-
cleus and into the (entry) ribosome. Although
students may mention the content terms such
as nucleus and ribosome correctly, they tend to
miss the directionality (of the mRNA). Since
terms such as into, out of etc. are prepositions
or function words, they get replaced, in our au-
tomated approach by \w{0,x}. Hence, if the
student answer mentions “the mRNA moved
into the nucleus” as opposed to saying “out
of the nucleus”, our pattern would incorrectly
match it.

2. Another reason why automated regular expres-
sions do not perform well is that WordNet
treats terms such as nucleus and ribosome as
synonyms. As a result when students inter-
change the two terms, the regular expression
finds incorrect matches. For example an au-
tomated pattern for the text “travels from the
cytoplasm into the ribosome” is represented as
travels(\s\w{0,4}\s){0,2}(?=.*
(cytoplasm|endoplasm(ic)?).*)
(\s\w{0,4}\s){0,2}(?=.*(riboso-
m(e)?|nucleu(s)?).*). An incorrect
student answer containing “· · · mRNA travels
from the cytoplasm into the nucleus · · ·” will
match this pattern.

As described above we found that retaining stop-
words (e.g. prepositions such as “into” or “out of”)
in the regular expressions may be useful in the case
of some prompts. Our approach to regular expres-
sion generation may be tweaked to allow the use of
stopwords for some prompts. However, our aim is to
show that with a generalized approach (in this case

one that excludes stopwords) our system performs
better than Tandalla’s.

In the case of prompt 7, the answers are ex-
pected to contain a description of the traits of
a character named Rose, as well as an expla-
nation on why students thought that the char-
acter was caring. An automated pattern such as:
(?=.*(hard|difficult).*)(?=.*(work-
(ing)?).*) captures some of Rose’s traits. The
answer “Rose was a very hard working girl. She
felt really lonely because her dad had just left and
her mother worked most of the day.” matches the
above pattern. However the explanation provided
by the student in the second sentence is not correct.
This answer was awarded a score of 1 by the
human grader, but was given a 2 by the system.
Although the pattern succeeds in capturing partial
information, it does not capture the explanation
correctly for this prompt.

5 Mohler et al. (2011)’s Short Answer
Dataset

In this section we evaluate our approach on an al-
ternate short answer scoring dataset generated by
Mohler et al. (2011). The aim is to show that
our method is not specific to a single type of short
answer, and could be used successfully on other
datasets to build scoring models.

Mohler et al. use a combination of graph-based
alignment and lexical similarity measures to grade
short answers. They evaluate their model on a
dataset containing 10 assignments and 2 examina-
tions. The dataset contains 81 questions with a total
of 2273 answers. The dataset was graded by two hu-
man judges on a scale of 0–5. Human judges have
an agreement of 57.7%.

Mohler et al. apply a 12-fold cross validation
over the entire dataset to evaluate their models. On
average, the train fold contains 1894 data points
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Table 2: Sample questions from a single assignment.
Questions in this assignment are about sorting tech-
niques. Since they discuss the same subject a single
model can be built for the assignment.

1. In one sentence, what is the main idea imple-
mented by insertion sort?
2. In one sentence, what is the main idea imple-
mented by selection sort?
3. What is the number of operations for insertion
sort under a best-case scenario, and what is the
best-case scenario?
4. What is the base case for a recursive implemen-
tation of merge sort?

while the test fold contains 379 data points. Mod-
els are constructed with data from assignments con-
taining questions on a variety of programming con-
cepts such as the role of a header file, offset notation
in arrays and the advantage of linked lists over ar-
rays. Although all the questions are from the same
domain (e.g. computer programming) the answers
they evoke are very different.

Mohler et al. achieved a correlation of 0.52 with
the average human grades, with a hybrid model that
used Support Vector Machines as a ranking algo-
rithm. The hybrid model contained a combination
of graph-nodes alignment, bag-of-words and lexi-
cal similarity features. The best Root Mean Square
Error (RMSE) of 0.98 was achieved by the hybrid
model, which used Support Vector Regression as the
learner. The best median RMSE computed across
each individual question was 0.86.

5.1 Experiment and Results

We use the same dataset to extract text patterns.
Since patterns are prompt or question specific we
cannot create models using the entire dataset like
Mohler et al. do. Patterns extracted from across
different questions may not be representative of
the content of individual questions or assignments.
Questions within each assignment are on the same
topic. Table 2 contains a list of all questions from
Assignment 5, which is about insertion, selection
and merge sort algorithms. We therefore extract pat-
terns containing content tokens and phrases for each
assignment.

The data for each assignment is divided into train

Figure 3: Features used and models built for the experi-
ment on Mohler et al. (2011)’s short answer dataset.

and test sets (80% train and 20% test). The train set
contains a total of 1820 data points and the test set
contains a total of 453 data points. The train data
is used to extract content tokens and phrase patterns
from sample answers.

Most short answer grading systems use term vec-
tors as features (Higgins et al., 2014), since they
work as a good baseline. Term vectors contain fre-
quency of terms in an answer. We use a combination
of term vectors and automatically extracted patterns
as features.

We use a Random Forest regressor as the learner
to build models. The learner is trained on the av-
erage of the human grades. We stack results from
models created with each type of pattern to com-
pute final results. Results are listed in Table 3. Our
approach’s correlation over all the test data is 0.61.
The RMSE is 0.86, and the median RMSE computed
over questions is 0.77. The improvement in correla-
tion of our stacked model over Mohler et al.’s per-
formance of 0.52 is significant (one tailed test, p-
value = 0.02 < 0.05, thus the null hypothesis that
this difference is a chance occurrence may be re-
jected). Correlation achieved by using just term vec-
tors is 0.56 (difference from Mohler et al.’s result is
not significant). These results indicate that the use of
patterns results in an improvement in performance.

The above process was repeated at the granular-
ity level of questions. Data points from each ques-
tion were divided into train and test sets, and models
were built for each training set. There were a total
of 1142 training and 1131 test data points. Results
from the stacked model are computed over all the
test predictions. This model achieved a correlation
of 0.61, and an RMSE of 0.88. The median RMSE
computed over each of the questions is 0.82.
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Table 3: Comparing performance of models on Mohler
et al. (2011)’s dataset. Md(RMSE): median RMSE over
questions; AutoP (As): Stacked model over assignments;
AutoP (Qs): Stacked model over questions; Baseline:
Mohler et al.’s best results; Human: Human Average
(Mohler et al., 2011). “*” under column Sig. indicates
that the difference between our model and the baseline is
statistically significant (p < 0.05)

Models R Sig. RMSE Md(RMSE)
AutoP (As) 0.61 * 0.86 0.77
AutoP (Qs) 0.61 * 0.88 0.82
Term vectors 0.56 0.92 0.87
Baseline 0.52 0.98 0.86
Human 0.59 0.66 0.61

As can be seen from Table 3 our stacked model
performs better in terms of correlation, RMSE and
median RMSE over questions than Mohler et al.’s
best models. One of the reasons for improved per-
formance could be that models were built over indi-
vidual assignments or questions rather than over the
entire data. Patterns are particularly effective when
built over assignments containing the same type of
responses. Short answer scoring can be very sen-
sitive to the content of answers. Hence using data
from across a variety of assignments could result in
a poorly generalized model.

6 Conclusion

Automatically scoring short answers is difficult. For
example, none of Kaggle ASAP short answer scor-
ing competitors managed to consistently reach the
level of human-human reliability in scoring. The re-
sults of the Kaggle competition, however do show
that manually generated regular expressions are a
promising approach to increase performance. Regu-
lar expressions like patterns are easily interpretable
features that can be used by learners to boost short
answer scoring performance. They capture seman-
tic and contextual information contained within a
text. Thus, determining the best ways to incorpo-
rate these patterns as well as making it efficient to
develop them is critical to improving short answer
scoring.

In this paper we introduce an automated approach
to generate text patterns with limited human ef-
fort, and whose performance is comparable to man-

ually generated patterns. Further we ensure that the
method is generalizable across data sets.

We generate patterns from rubrics and sample
top-scoring answers. These patterns help capture the
desired structure and semantics of answers and act
as good features in grading short answers. Our ap-
proach achieves a QW Kappa of 0.78 on the Kag-
gle short answer scoring dataset, which is greater
than the QW Kappa achieved by the best performing
model that uses manually generated regular expres-
sions. We also show that on Mohler et al. (2011)’s
dataset our model achieves a correlation of 0.61 and
an RMSE of 0.77. This result is an improvement
over Mohler et al. (2011)’s best published correla-
tion of 0.52 and RMSE of 0.86.
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