
Proceedings of the Second Workshop on Arabic Natural Language Processing, pages 138–143,
Beijing, China, July 26-31, 2015. c©2014 Association for Computational Linguistics

GWU-HASP-2015@QALB-‐2015 Shared Task:
Priming Spelling Candidates with Probability1

 Mohammed Attia, Mohamed Al-Badrashiny, Mona Diab
Department of Computer Science

The George Washington University
{Mohattia;badrashiny;mtdiab}@gwu.edu

Abstract

In this paper, we describe our system
HASP-2015 (Hybrid Arabic Spelling and
Punctuation Corrector) in which we in-
troduce significant improvements over
our previous version HASP-2014 and
with which we participated in the QALB-
2015 Second Shared Task on Arabic Er-
ror Correction. Our system utilizes prob-
abilistic information on errors and their
possible corrections in the training data
and combine that with an open-source
reference dictionary (or word list) for de-
tecting errors and generating and filtering
candidates. We enhance our system fur-
ther by allowing it to generate candidates
for common semantic and grammatical
errors. Eventually, an n-gram language
model is used for selecting best candi-
dates. We use a CRF (Conditional Ran-
dom Fields) classifier for correcting
punctuation errors in a two-pass process
where first the system learns punctuation
placement, and then it learns to identify
punctuation types.

1 Introduction

In this paper1 we describe our system for Arabic
spelling error detection and correction, HASP-
2015 (Hybrid Arabic Spelling and Punctuation
Corrector). We introduce significant
improvements to our previous version HASP-
2014 (Attia et al., 2014). We participate with
HASP-2015 in the QALB-2015 Second Shared
Task on Arabic Error Correction (Rozovskaya et
al., 2015).

1 This work was supported by the Defense Advanced
Research Projects Agency (DARPA) Contract No.
HR0011-12-C-0014, BOLT program with subcontract
from Raytheon BBN.

The problem of Arabic spelling error correc-
tion has been investigated in a number of papers
(Haddad and Yaseen, 2007; Alfaifi and Atwell,
2012; Hassan et al., 2008; Attia et al., 2012; Al-
kanhal et al., 2012). Significant contributions
were also introduced in the 2014 Shared Task on
Arabic Error Correction (Mohit et al., 2014) in-
cluding (Rozovskaya et al., 2014; Nawar and
Ragheb, 2014; Jeblee et al., 2014; and Mubarak
and Darwish, 2014).
 The QALB-‐2015 shared task is an extension
of the first QALB shared task (Mohit et al.,
2014) that took place in 2014. QALB-‐2014 ad-
dressed errors in comments written to Aljazeera
articles by native Arabic speakers (Zaghouani et
al., 2014). This year's competition includes two
tracks, and, in addition to errors produced by na-
tive speakers, also includes correction of texts
written by learners of Arabic as a foreign lan-
guage (L2) (Zaghouani et al., 2015). The native
track includes Alj-‐train-‐2014, Alj-‐dev-‐2014, Alj-‐
test-‐2014 texts from QALB-‐2014. The L2 track
includes L2-‐train-‐2015 and L2-‐dev-‐2015. This
data was released for the development of the sys-
tems. The systems are scored on blind test sets
Alj-‐test-‐2015 and L2-‐test-‐2015. Our system is
ranked third and fourth on the Alj and L2, re-
spectively.
 The shared task data deals with “errors” in the
general sense which comprise: a) punctuation
errors; b) non-word errors; c) real-word spelling
errors; d) grammatical errors (related to case,
number and gender); and, e) affective variations
such as elongation (kashida) and speech effects
such as character multiplication for emphasis.
Our previous system, HASP-2014, handles only
types (a), (b), and (e) errors. We extend our sys-
temt HASP-2015 to provide coverage for and
address types (d) and (e) spelling errors.

138

2 Our Methodology

Our system uses a pipeline of four compo-
nents: 1) regular expression normalization for
deterministic errors, 2) A discriminative classifi-
er for punctuation errors, 3) Spelling detection
and handling, and, 4) Post-processing for fixing
common system errors.

For punctuation errors, we use a classifier in a
two-pass process where first the system learns
punctuation placement, and then it learns to iden-
tify punctuation types. The reason for this stag-
ing is that learning six punctuation types at once
could be problematic for the classifier, and we
hypothesize that splitting the task of placement
from identification, where in the first step it
makes a binary decision of whether or not to in-
sert a punctuation mark, and in the second step it
predicts the type of that punctuation mark.

In HASP-2014, we only rely on a reference
dictionary (or word list) for detecting errors and
generating candidates. The candidates were gen-
erated according to the edit distance between the
erroneous word and possible candidates.

In HASP-2015, we generate probabilistic in-
formation from the training data on errors and
their possible corrections and utilize this infor-
mation in detecting errors and generating candi-
dates. The reference dictionary is relegated to as
a back-off function when no probabilistic infor-
mation is available in the training data. Our sys-
tem is able to detect and generate candidates for
common semantic and grammatical errors. Can-
didates and their probabilistic scores are passed
an n-gram language model for selecting best
candidates. Our system is explained in detail in
the next section.

For organizational purposes, we divide errors
into two types: a) nonverbal errors which include
affective variations, punctuation, word merges
and word splits; and b) verbal errors, which in-
clude non-word error, real-word error, grammat-
ical errors, and dialectal words/expressions. In
other words, verbal errors are related to the al-
phabetical buildup of words, and non-verbal er-
rors go beyond this alphabetical buildup.

3 Nonverbal Errors

Nonverbal errors include affective variations,
punctuation errors, word merges and word splits.

3.1 Affective Variations

There are many instances in the shared task’s
data that can be treated using simple and straight-
forward conversion via regular expression re-
place rules. We estimate that these instances
cover 10% of the non-punctuation errors in the
development set. In HASP, we use deterministic
heuristic rules to normalize the text, including
the removal of speech effects, such as االرجااااااالل
AlrjAAAAl ‘men’ which is converted to االرجالل Al-
rjAl, the removal of decorative kashida, e.g. ددمــاء
dm__A' ‘blood’, and the conversion of Hindi dig-
its (٠۰١۱٢۲٣۳٤٥٦٧۷٨۸٩۹) into Arabic digits [0-9].

3.2 Punctuation Errors

Punctuation errors constitute 40% of the errors in
the QALB Arabic data. In HASP-2015, we con-
tinue to handle the six basic punctuation marks:
comma, colon, semi-colon, exclamation mark,
question mark, and period.

For classification, we use a Conditional Ran-
dom Field, CRF++ classifier (Lafferty et al.
2001) with window size 5. The features we use
are extracted from the ‘column’ file in the QALB
shared task data, which includes preprocessing
with MADAMIRA morphological disambiguator
(Pasha et al., 2014). In HASP-2015, we split the
task of the classifier into two subtasks: place-
ment and identification.

Experiment R P F
Baseline 45.70 76.01 57.08
Pass_II +

Alj_Training
52.11 72.33 60.58

Pass_II +
Merge_Training

52.17 72.38 60.63

Table 1. CRF Pass II results for Alj

Experiment R P F
Baseline 13.87 20.57 16.57
Pass_II +

Alj_Training
37.38 30.53 33.61

Pass_II +
Merge_Training

33.98 33.73 33.86

Table 2. CRF Pass II results for L2

Pass I: Placement
The placement subtask is a binary classification
task where the classifier decides whether a punc-
tuation mark (regardless of the type) should be
included or not. We use five features in this pro-
cess:

139

(1) The original word, that is the word as it ap-
pears in the text without any further pro-
cessing, (e.g., للتشاوورر llt$Awr ‘for consulting’);

(2) Stem. We use the Penn Arabic Treebank
(PATB) tokenization (e.g., لل+ االتشاوورر
l+Alt$Awr) and strip off the clitics (e.g.,
 ;(Alt$Awr االتشاوورر

(3) Kulick (Kulick et al., 2011) POS tag (e.g.,
IN+DT+NN);

(4) Buckwalter POS tag (e.g., PREP+DET+
NOUN+CASE_DEF_GN) as produced by
MADAMIRA;

(5) Classes to be predicted: punc_after and NA.

Pass II: Identification
This stage uses the same set of features of the
placement stage in addition to its output to de-
termine the type of punctuation mark to be
placed. The predicted class is one of the follow-
ing seven: colon_after, comma_after, ex-
clmark_after, period_after, qmark_after, semico-
lon_after, and NA.
 This two-pass process shows significant im-
provement over the baseline for Alj and L2 data
as illustrated in Table 1 and 2.

2.3 Word Merges

Merged words are when the space(s) between
two or more words is deleted, such as ھھھهذاااالنظامم
h*AAlnZAm ‘this system’, which should be ھھھهذاا
 h*A AlnZAm. These errors constitute 3.67% االنظامم
and 3.48% of the error types in the shared task’s
development and training data, respectively. We
use Attia et al.’s (2012) algorithm for dealing
with merged words, 𝑙 − 3 , where l is word
length.
 Moreover, we found out that common merge
errors and their correction can conveniently be
learned from the training data, leading to signifi-
cant improvement as shown in the final results.
Here are some examples of frequent merge er-
rors:
• yArb یيارربب “O Lord” à yA rb
• EbdAllh Abdullah”àEbd Allh“ عبدالله

2.4 Word Splits

Beside the problem of merged words, there is
also the problem of split words, where one or
more spaces are inserted within a word, such as
 صمامم Sm Am ‘valve’ (the correct form is صم اامم
SmAm). This error constitutes 6% of the shared
task’s found in the training and development
sets. We found that the vast majority of instances
of this type of error involve the clitic conjunction
waw “and”, which should be represented as a

word prefix. Therefore, we opted to handle this
problem in our work in a partial and shallow
manner using deterministic rules by the reat-
tachment of the separated conjunction morpheme
waw وو w “and” to the succeeding word.

4 Verbal Errors

Verbal errors include non-word errors, real-word
errors, grammatical errors, and dialectal
words/expressions.

4.1 Error Detection

 The method for detecting spelling errors have
usually varied according to the type of error. A
non-word spelling error is typically defined as
(adapted from Brill, and Moore, 2000): given an
alphabet Ʃ, a reference dictionary 𝐷 consisting of
strings in Ʃ∗, a given word is a spelling error 𝑠 if
𝑠 ∊ Ʃ∗ and 𝑠 ∉ 𝐷.
 For real-word errors, a reference dictionary
will not help, as both the error and the correction
are valid words in isolation. Instead, a language
model, for example, is used to estimate the like-
lihood of words in a certain context, and words
that fall below a certain threshold are considered
as a possible error. POS bigrams and tri-grams
have also been used for that purpose (Kukich,
1992).
 We employ a single algorithm to detect all types
of spelling errors, whether non-word, semantic,
grammatical or dialectal. Our algorithm for error
detection is to find words in the training data
where 𝑛(𝑃(𝑠 | 𝑐)) > 𝑃(𝑠 | 𝑠!) , where 𝑠 is a
spelling error, c is the correction, n is a threshold
and 𝑠` is 𝑠 considered as a candidate. This trans-
lates to the probability of 𝑐 given 𝑠 times 𝑛 is
greater than the probability of 𝑠! given 𝑠. In our
system, we set the threshold 𝑛 = 2 which effec-
tively mean that a semantic error is only consid-
ered when the probability of the correction is
more than half the probability of the reference
word. The threshold estimation is an empirical
question determined by the robustness of the
language model and the quantity of noise in the
training data.
 In HASP-2015, the reference dictionary is not
totally discarded, but used as a back-off resource
to cover instances not included in the training
data. We use AraComLex Extended, an open-
source reference dictionary (or word list) of
9.2M full-formed words (Attia et al., 2012) as
our backup reference dictionary.

140

4.2 Candidate Generation

Correcting spelling errors is ideally treated as a
probabilistic problem formulated as (Kernigan,
1990; Norvig, 2009; Brill, and Moore, 2000):

 𝑎𝑟𝑔𝑚𝑎𝑥! 𝑃(𝑠 | 𝑐) 𝑃(𝑐)

Here 𝑃(𝑐) is the probability that 𝑐 is the correct
word (or the language model), and 𝑃(𝑠 | 𝑐) is the
probability that 𝑠 is typed when 𝑐 is intended (the
error model or noisy channel model), 𝑎𝑟𝑔𝑚𝑎𝑥!
is the scoring mechanism that computes the cor-
rection c that maximizes the probability.
 In HASP-2014, we ranked candidates accord-
ing to their edit distance score using the finite
state compiler, foma (Hulden, 2009), but in
HASP-2015, we rank candidates according to
their probability, (𝑠 | 𝑐) , as derived from the
training data, and we pass candidates along with
their probability scores to the language model.
Again, the edit distance candidates and their
ranking are used when no probability infor-
mation is available from the training data. The
following are some illustrative examples of the
statistical information extracted from the training
data for the various error types.

Non-word errors:
An اانن “that” >n#7781; <n#1485; |n#29
AlA االا “but” <lA#1442; >lA#225

Semantic errors:
Alhm االھهم “worry” Alhm#20; Allhm#17
Ely علي “on” ElY#818; Ely#318

Grammatical errors:
mjrmyn مجرمیين
“criminals”

mjrmyn#31; mjrmwn#16

lyl لیيل “night” lyl#34; lylA#16

Dialectal words:
bs بس “but” lkn#67; fqT#27
AHnA ااحنا “we” nHn#65; >HnA#9

 Additionally, we use some generic rules to
generate candidates for possible dialectal errors:
• Add A after final w as in آآمنو |manuw “they

believe”,
• Remove the colloquial aspectual clitic par-

ticle b before the perfective initials n, y, t.

5 Error Correction and Final Results

For error correction, namely selecting the best
solution among the list of candidates, we use an

n-gram language model (LM), as implemented in
the SRILM package (Stolcke et al., 2011). We
use the ‘disambig’ tool for selecting candidates
from a map file where erroneous words are pro-
vided with a list of possible corrections. We also
use the ‘ngram’ utility in post-processing for de-
ciding on whether a split-word solution has a
better probability than a single word solution.
Our tri-gram language model is trained on the
Arabic Gigaword Corpus, 5th edition (Parker et
al., 2011) and a corpus crawled from Al-Jazeera
(Attia et al.; 2012).

 For the LM disambiguation we use the ‘-fb’
option (forward-backward tracking), and we pro-
vide candidates with probability scores collected
from the QALB training data. Both of the for-
ward-backward tracking and the probability
scores in tandem yield better results than the de-
fault values. We evaluate the performance of our
system against the gold standard using the Max-
Match (M2) method for evaluating grammatical
error correction by Dahlmeier and Ng (2012).

 Our best f-score is obtained by priming candi-
dates from the training data, adding Al-Jazeera
corpus to Gigaword 5, and using the two-pass
CRF punctuation prediction. Table 3 and 4 show
the results on Alj and L2 development sets re-
spectively. Table 5 shows the results on Alj and
L2 test sets.

Experiment R P F
1 Baseline (HASP’14) 52.98 75.47 62.25

2
Prime non-word can-
didates from the
training set

55.26 77.40 64.48

3
Include real-word
candidates from the
training data

57.87 77.03 66.09

4 Prime merge errors
from the training set 58.67 77.70 66.86

5 Post-processing 58.80 77.83 66.99

6 Two-pass punctua-
tion correction 60.40 76.57 67.53

7
3 gram LM and add-
ing Al-Jazeera corpus
to Gigaword

60.59 76.65 67.68

Table 3. Results for Alj-‐test-‐2014 (dev set)

Experiment R P F
1 Baseline 22.27 56.80 31.99

2
3 gram LM and
adding Al-Jazeera
corpus to Gigaword

22.35 57.17 32.14

Table 4. System results for L2-‐dev-‐2015

141

Experiment R P F
1 Alj-‐test-‐2015 67.51 74.69 70.92

2 L2-‐test-‐2015 23.32 55.66 32.87
Table 5. System results for the test sets

 For the baseline, we use the older version of
our system (HASP-2014), and the results show
significant improvement in performance. The
biggest two gains in performance, as shown in
Table 3, came from experiments 2 and 3 when
candidates and their probabilities were extracted
from the training data and used to supplement
candidates generated from the reference diction-
ary using edit distance. Experiment 3, i.e. using
real-word candidate allowed our system to han-
dle semantic and grammatical errors, a domain
which was beyond the scope of the previous ver-
sion. Dialectal errors were included in Experi-
ment 2 dealing with non-word candidates. It is to
be noted the system can benefit from a larger
training set if that becomes available in the fu-
ture.
 The slight improvements gained by experi-
ments 4 through 7 are an indication of the di-
mensions along which future improvements
might be achieved. These dimensions include
better way of handling merge errors, post-
processing for correcting system-specific errors,
better handling of punctuation errors, and better
selection of data for training the language model.
 It is also to be noted that the gold data suffers
from instances of inconsistency. For example لابد
lAbd “must” is split as two words لا بد lA bd in
64% of the cases, while ماززاالل mAzAl “still” is
split in 32% of the cases.
 Moreover, while conducting error analysis we
found many errors in the manual annotation of
the gold development data. For example, االلذيي
All*y “who” is incorrectly corrected as ىىاالذ Al*Y
while the correct correction is يياالذ Al*y and
many more errors are not detected at all in the
gold data, such as ،اانكم٬ Ankm “you” and االملتحدةة
AlmltHdp for االمتحدةة AlmtHdp “united”. In total,
we automatically found over 200 errors in the
gold development data, but with manual check-
ing it is found that some of the instances are in-
correctly reported. However, we assume that
more investigation of the consistency and accu-
racy of the gold data can lead to better perfor-
mance and better evaluation of the systems par-
ticipating in the shared task.

6 Conclusion

We have described our system HASP for the au-
tomatic correction of spelling and punctuation
mistakes in Arabic. To our knowledge, this is the
first system to handle punctuation errors. We
utilize and improve on an open-source full-form
dictionary, introduce a better algorithm for hand-
ing merged word errors, tune the LM parameters,
and combine the various components together,
leading to cumulative improved results.

References
Alkanhal, Mohamed I., Mohamed A. Al-Badrashiny,

Mansour M. Alghamdi, and Abdulaziz O. Al-
Qabbany. (2012) Automatic Stochastic Arabic
Spelling Correction With Emphasis on Space In-
sertions and Deletions. IEEE Transactions on Au-
dio, Speech, and Language Processing, Vol. 20,
No. 7, September 2012.

Attia, Mohammed, Mohamed Al-Badrashiny, Mona
Diab. GWU-HASP: Hybrid Arabic Spelling and
Punctuation Corrector. Proceedings of the EMNLP
2014 Workshop on Arabic Natural Langauge Pro-
cessing (ANLP), pages 148–154, October 25,
2014, Doha, Qatar.

Attia, Mohammed, Pavel Pecina, Younes Samih,
Khaled Shaalan, Josef van Genabith. 2012. Im-
proved Spelling Error Detection and Correction for
Arabic. COLING 2012, Bumbai, India.

Brill, Eric and Moore, Robert C. (2000) An improved
error model for noisy channel spelling correction.
Proceedings of the 38th Annual Meeting of the As-
sociation for Computational Linguistics, Hong
Kong, pp. 286–293.

Dahlmeier, Daniel and Ng, Hwee Tou. 2012. Better
evaluation for grammatical error correction. In
Proceedings of NAACL.

Haddad, B., and Yaseen, M. (2007) Detection and
Correction of Non-Words in Arabic: A Hybrid Ap-
proach. International Journal of Computer Pro-
cessing of Oriental Languages. Vol. 20, No. 4.

Hassan, A, Noeman, S., and Hassan, H. (2008) Lan-
guage Independent Text Correction using Finite
State Automata. IJCNLP. Hyderabad, India.

Hulden, M. (2009) Foma: a Finite-state compiler and
library. EACL '09 Proceedings of the 12th Confer-
ence of the European Chapter of the Association
for Computational Linguistics. Association for
Computational Linguistics Stroudsburg, PA, USA

Jeblee, S., Bouamor, H., Zaghouani, W., and Oflazer,
K. 2014. CMUQ@QALB-2014: An SMT-based
System for Automatic Arabic Error Correction. In
Proceedings of EMNLP Workshop on Arabic Nat-
ural Language Processing: QALB Shared Task.

142

Kulick Seth. Exploiting separation of closed-class
categories for Arabic tokenization and part-of-
speech tagging. In Graham Katz and Mona Diab,
editors, Special Issue on Arabic Computational
Linguistics, ACM Transactions on Asian Lan-
guage Information Processing. 2011.

Kernigan, M., Church, K., Gale W. (1990). A
Spelling Correction Program Based on a Noisy
Channel Model. AT & T Laboratories, 600 Moun-
tain Ave., Murray Hill, NJ.

Kukich, Karen. (1992) Techniques for automatically
correcting words in text. Computing Surveys,
24(4), pp. 377–439.

Lafferty, John, Andrew McCallum, and Fernando
Pereira. (2001) Conditional random fields: Proba-
bilistic models for segmenting and labeling se-
quence data, In Proceedings of the International
Conference on Machine Learning (ICML 2001),
MA, USA, pp. 282-289.

Mohit, Behrang, Alla Rozovskaya, Nizar Habash,
Wajdi Zaghouani, and Ossama Obeid, 2014. The
First QALB Shared Task on Automatic Text Cor-
rection for Arabic. In Proceedings of EMNLP
workshop on Arabic Natural Language Processing.
Doha, Qatar.

Mubarak, H. and Darwish, K. 2014. Automatic Cor-
rection of Arabic Text: a Cascaded Approach. In
Proceedings of EMNLP Workshop on Arabic Nat-
ural Language Processing: QALB Shared Task.

Nawar, M. and Ragheb, M. 2014. Fast and Robust
Arabic Error Correction System. In Proceedings of
EMNLP Workshop on Arabic Natural Language
Processing: QALB Shared Task.

Ng, Hwee Tou, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. (2013) The
CoNLL-2013 Shared Task on Grammatical Error
Correction. Proceedings of the Seventeenth Con-
ference on Computational Natural Language
Learning: Shared Task, pages 1–12, Sofia, Bulgar-
ia, August 8-9 2013.

Norvig, P. (2009) Natural language corpus data. In
Beautiful Data, edited by Toby Segaran and Jeff
Hammerbacher, pp. 219-“-242. Sebastopol, Ca-
lif.: O'Reilly.

Och, Franz Josef, Hermann Ney. (2003) A Systematic
Comparison of Various Statistical Alignment
Models. In Computational Linguistics, volume 29,
number 1, pp. 19-51 March 2003.

Parker, R., Graff, D., Chen, K., Kong, J., and Maeda,
K. (2011) Arabic Gigaword Fifth Edition. LDC
Catalog No.: LDC2011T11, ISBN: 1-58563-595-2.

Pasha, Arfath, Mohamed Al-Badrashiny, Ahmed El
Kholy, Ramy Eskander, Mona Diab, Nizar Habash,
Manoj Pooleery, Owen Rambow, Ryan Roth.

(2014) MADAMIRA: A Fast, Comprehensive Tool
for Morphological Analysis and Disambiguation of
Arabic. In Proceedings of the 9th International
Conference on Language Resources and Evaluation
(LREC 2014), Reykjavik, Iceland.

Rozovskaya, Alla, Houda Bouamor, Nizar Habash,
Wajdi Zaghouani, Ossama Obeid and Behrang
Mohit. (2015) The Second QALB Shared Task on
Automatic Text Correction for Arabic. Proceedings
of ACL Workshop on Arabic Natural Language,
Beijing, China.

Rozovskaya, A., Habash, N., Eskander, R., Farra, N.,
and Salloum, W. (2014) The Columbia System in
the QALB-2014 Shared Task on Arabic Error Cor-
rection. In Proceedings of EMNLP Workshop on
Arabic Natural Language Processing: QALB
Shared Task.

Stolcke, A., Zheng, J., Wang, W., and Abrash, V.
(2011) SRILM at sixteen: Update and outlook. in
Proc. IEEE Automatic Speech Recognition and
Understanding Workshop. Waikoloa, Hawaii.

Zaghouani, Wajdi, Habash, Nizar, Bouamor, Houda,
Rozovskaya, Alla, Mohit, Behrang, Heider, Abeer
and Oflazer, Kemal. 2015. Correction Annotation
for Non-‐Native Arabic Texts: Guidelines and Cor-
pus. Proceedings of The 9th Linguistic Annotation
Workshop, Denver, Colorado, USA, pp. 129-‐139.

Zaghouani, Wajdi, Behrang Mohit, Nizar Habash,
Ossama Obeid, Nadi Tomeh, Alla Rozovskaya,
Noura Farra, Sarah Alkuhlani, and Kemal Oflazer.
2014. Large Scale Arabic Error Annotation: Guide-
lines and Framework. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14), Reykjavik, Iceland.

143

