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Abstract

We describe an algorithm for inducing
clause-combining rules for use in a tradi-
tional natural language generation archi-
tecture. An experiment pairing lexical-
ized text plans from the SPaRKy Restau-
rant Corpus with logical forms obtained
by parsing the corresponding sentences
demonstrates that the approach is able to
learn clause-combining operations which
have essentially the same coverage as
those used in the SPaRKy Restaurant Cor-
pus. This paper fills a gap in the litera-
ture, showing that it is possible to learn mi-
croplanning rules for both aggregation and
discourse connective insertion, an impor-
tant step towards ameliorating the knowl-
edge acquisition bottleneck for NLG sys-
tems that produce texts with rich discourse
structures using traditional architectures.

1 Introduction

In a traditional natural language generation (NLG)
system (Reiter and Dale, 2000), a pipeline of
hand-crafted components is used to generate high
quality text, albeit at considerable knowledge-
engineering expense. While there has been
progress on using machine learning to amelio-
rate this issue in content planning (Duboue and
McKeown, 2001; Barzilay and Lapata, 2005) and
broad coverage surface realization (Reiter, 2010;
Rajkumar and White, 2014), the central stage of
sentence planning (or microplanning) has proved
more difficult to automate. More recently, Angeli
et al. (2010) and Konstas and Lapata (2013), inter
alia, have developed end-to-end learning methods
for NLG systems; however, as discussed further in
the next section, these systems assume quite lim-
ited discourse structures in comparison to those
with more traditional architectures.

In this paper, we describe a method of inducing
clause-combining rules of the kind used in tradi-
tional sentence planners. In particular, we base our
approach on the architecture used in the SPaRKy
restaurant recommendation system (Walker et al.,
2007), where a sentence plan generator is used to
map a text plan to a range of possible sentence
plans, from which one is selected for output by
a sentence plan ranker.1 To demonstrate the vi-
ability of our method, we present an experiment
demonstrating that rules corresponding to all of
the hand-crafted operators for aggregation and dis-
course connective insertion used in the SPaRKy
Restaurant Corpus can be effectively learned from
examples of their use. To our knowledge, these
induced rules for the first time incorporate the
constraints necessary to be functionally equiva-
lent to the hand-crafted clause-combining opera-
tors; in particular, our method goes beyond the
one Stent and Molina (2009) develop for learning
clause-combining rules, which focuses on learn-
ing domain-independent rules for discourse con-
nective insertion, ignoring aggregation rules and
any potentially domain-dependent aspects of the
rules. As such, our approach promises to be of im-
mediate benefit to NLG system developers, while
also taking an important step towards reducing the
knowledge acquisition bottleneck for developing
NLG systems requiring rich discourse structures
in their outputs.

2 Related Work

Angeli et al. (2010) present an end-to-end train-
able NLG system that generates by selecting a

1The sentence plan ranker uses machine learning to rank
sentence plans based on features derived from the sentence
plan and its realization, together with accompanying human
ratings for the realizations in the training data. As such, the
SPaRKy architecture differs from traditional ones in using
machine learning to rank potential outputs, but it follows the
traditional architecture in making use of lexicalization, ag-
gregation and referring expression rules in a distinct sentence
planning stage.
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sequence of database records to describe, a se-
quence of fields on those records to mention, and
finally a sequence of words for expressing the val-
ues of those fields. Though Konstas and Lapata
(2013) generalize Angeli et al.’s approach, they
acknowledge that handling discourse-level docu-
ment structure remains for future work. Given this
limitation, under their approach there is no need to
explicitly perform aggregation: instead, it suffices
to “pre-aggregate” propositions about the same en-
tity onto the same record. However, in the general
case aggregation should be subject to discourse
structure; for example, when contrasting the posi-
tive and negative attributes of an entity according
to a given user model, it makes sense to aggre-
gate the positive and negative attributes separately,
rather than lumping them together (White et al.,
2010). Consequently, we aim to learn aggregation
rules that are sensitive to discourse structure, as
with the SPaRKy architecture.

Other notable recent approaches (Lu et al.,
2009; Dethlefs et al., 2013; Mairesse and Young,
2014) are similar in that they learn to map se-
mantic representations to texts using conditional
random fields or factored language models with
no explicit model of syntactic structure, but the
content to be expressed is assumed to be pre-
aggregated in the input. Kondadadi et al. (2013)
develop a rather different approach where large-
scale templates are learned that can encapsulate
typical aggregation patterns, but the templates
cannot be dynamically combined in a way that is
sensitive to discourse structure

Previous work on aggregation in NLG, e.g. with
SPaRKy itself or earlier work by Pan and Shaw
(2004), focuses on learning when to apply aggre-
gation rules, which are themselves hand-crafted
rather than learned. The clause-combining rules
our system learns—based on lexico-semantic de-
pendency edits—are closely related to the lexico-
syntactic rewrite rules learned by Angrosh and
Siddharthan’s (2014) system for text simplifica-
tion. However, our learned rules go beyond theirs
in imposing (non-)equivalence constraints crucial
for accurate aggregation. Finally, work on text
compression (Woodsend and Lapata, 2011; Cohn
and Lapata, 2013) is also related, but focuses on
simple constituent deletion, and to our knowledge
does not implement aggregation constraints such
as those here.

3 SPaRKy Restaurant Corpus

Walker et al. (2007) developed SPaRKy (a Sen-
tence Planner with Rhetorical Knowledge) to ex-
tend the MATCH system (Walker et al., 2004) for
restaurant recommendations. In the course of their
study they produced the SPaRKy Restaurant Cor-
pus (SRC), a collection of content plans, text plans
and the surface realizations of those plans evalu-
ated by users.2

While the restaurant recommendation domain
is fairly narrow in terms of the kinds of propo-
sitions represented, it requires careful application
of aggregation operations to make concise, natu-
ral realizations. This is evident both in the care
taken in incorporating clause-combining rules into
SPaRKy and in subsequent work on the expres-
sion of contrast which used this domain to mo-
tivate extensions of CCG to the discourse level
(Nakatsu and White, 2010; Howcroft et al., 2013).
Five kinds of clause-combining operations are in-
cluded in SPaRKy, most of which involve lex-
ically specific constraints. These are illustrated
in Table 2, using propositions corresponding to
sentences (1)–(4) from Table 1 as input (com-
bined with either a CONTRAST or INFER relation).
MERGE combines two clauses if they have the
same verb with the same arguments and adjuncts
except for one. WITH-REDUCTION replaces an in-
stance of have plus an object X with the phrase
with X. REL-CLAUSE subordinates one clause
to another when they have a common subject.
CUE-WORD-CONJUNCTION combines clauses us-
ing the conjunctions and, but, and while, while
CUE-WORD-INSERTION combines clauses by in-
serting however or on the other hand into the
second clause. Table 2 also shows two opera-
tions, VP-COORDINATION and NP-APPOSITION,
which go beyond those in SPaRKy; these are dis-
cussed further in Section 5.5. Finally, it’s also pos-
sible to leave sentences as they are, simply juxta-
posing them in sequence.

For the experiments reported in this paper,
we have reimplemented SPaRKy to work with
OpenCCG’s broad coverage English grammar for
parsing and realization (Espinosa et al., 2008;
White and Rajkumar, 2009; White and Rajkumar,

2Available from http://users.soe.ucsc.edu/
˜maw/downloads.html under the textplans/utterances.
To our knowledge, the SRC remains the only publicly avail-
able corpus of input–output pairs for an NLG system using
discourse structures with rhetorical relations.
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Operator Sents Result
MERGE 1, 2 Sonia Rose has good decor and good service.
WITH-REDUCTION 1, 2 Sonia Rose has good decor, with good service.
REL-CLAUSE 1, 2 Sonia Rose, which has good service, has good decor.
CUE-WORD-CONJUNCTION 1, 3 Sonia Rose has good service, but Bienvenue has very good service.
CUE-WORD-INSERTION 1, 3 Sonia Rose has good service. However, Bienvenue has very good service.
VP-COORDINATION 3, 4 Bienvenue is a French restaurant and has very good service.
NP-APPOSITION 3, 4 Bienvenue, a French restaurant, has very good service.

Table 2: SRC clause-combining operations plus two additional operations we examined.

(1) Sonia Rose has good decor.
(2) Sonia Rose has good service.
(3) Bienvenue has very good service.
(4) Bienvenue is a French restaurant.

Table 1: Example sentences from the SRC do-
main.

2012).3 As in the original SPaRKy, the sentence
planner takes as input a text plan, which encodes
the propositions to be expressed at the leaves of a
tree whose internal nodes are marked with rhetor-
ical relations. The sentence planner then rewrites
the text-plan tree using a sequence of lexicaliza-
tion, clause-combining and referring expression
rules. The obligatory lexicalization rules straight-
forwardly rewrite the domain-specific proposi-
tions into a domain-general OpenCCG lexico-
semantic dependency graph, or logical form (re-
ferred to as a TPLF in Section 5.1). After lexi-
calization, the clause-combining and referring ex-
pression rules optionally apply to rewrite the log-
ical form into a set of alternative logical forms,
among which is ideally one or more options that
will express the content concisely and fluently af-
ter each sentence is realized; if none of the clause-
combining and referring expression rules apply,
the text will be realized as a sequence of very sim-
ple one-clause sentences, with proper names used
for all restaurant references.

As noted earlier, the task of choosing a particu-
lar logical form alternative belongs to the sentence
plan ranker; since its task is largely independent
of the task of generating alternative logical forms,
we do not address it in this paper. Indeed, to the
extent that our sentence planner produces logical
forms that are functionally equivalent to the alter-
native sentence plans in the SRC, we can expect
the output quality of the reimplemented system
with a suitably trained sentence plan ranker to be

3The lexicon is extended by the addition of the restaurant
names as proper nouns to avoid spurious bad parses resulting
from unknown words.

essentially unchanged, and thus an evaluation of
this kind would be uninformative.

An example aggregation rule for the OpenCCG-
based system (going beyond the options in the
SRC) appears in Figure 1, and an example input–
output pair for this rule appears in Figure 2. As
the latter figure shows, a dependency graph con-
sists of a set of nodes and relations between them,
where sibling nodes are taken to be unordered.
Nodes themselves comprise an identifier, a pred-
icate label and an unordered list of attribute-value
pairs. The graphs have a primary tree structure;
the graphs in Figure 2 are in fact trees, but in the
general case, node references can be used to rep-
resent nodes with multiple parents or even cycles
(in the case of relative clauses). The alignments
between nodes in the input and output graphs are
shown in the figure by using the same identifier for
corresponding nodes.

Clause-combining rules such as the one in Fig-
ure 1 are applied by unifying the left hand side of
the rule against an input dependency graph, return-
ing the graph specified by the right hand side of the
rule if unification succeeds and any further speci-
fied constraints are satisfied. The rules are imple-
mented in Prolog using an enhanced unification
routine that allows sibling nodes to be treated as
unordered, and which allows list variables (shown
between dots in the figure) to unify with the tail
(i.e., remainder) of a list of child nodes or a list of
attributes. In the example at hand, the variables G,
C, E and I are unified with node identifiers n(1),
n(2), n(7) and n(8), respectively. The list
variables ...D... and ...F... unify with
the empty list since the nodes for Bienvenue have
no child nodes, while ...L... unifies with a list
consisting of the relation Arg1 together with the
subgraph headed by n(3), and ...K... unifies
with a list consisting of the relations Det and Mod
together with their respective subgraphs headed
by n(9) and n(10). The list variables over at-
tributes unify trivially. Finally, after checking the
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...L...

rule:
_ infer-rel [ .._.. ]
  Arg1
    G have [ ..H.. ]
      Arg0
        C A [ ..B.. ]
          ...D...
      ...L...
  Arg2
    _ be [ .._.. ]
      Arg0
        E A [ ..B.. ]
          ...F...
      Arg1
        I restaurant [ ..J.. ]
          ...K...

s.t. [equiv(node(C,A,B,D),node(E,A,B,F))]

==> 

G have [ ..H.. ]
  Arg0
    C A [ ..B.. ]
      ApposRel
        I restaurant [ ..J.. ]
          ...K...
      ...D...
  ...L...

_ : infer_rel [.._..]

G : have [..H..] _ : be [.._..]

C : A [..B..] E : A [..B..]

Arg1

Arg0 Arg0

Arg2

...D... ...F...

I : restaurant [..J..]

...K...

...L...

G : have [..H..]

C : A [..B..]

Arg0

...D...
I : restaurant [..J..]

...K...

Arg1

ApposRel

Figure 1: On the left is a textual representation of an NP-APPOSITION operation inferred from com-
bining sentences 3 and 4 as shown in Table 2; on the right is a graphical representation. Capital letters
represent variables, and underscores represent anonymous variables; variables over lists of attributes or
dependencies are shown between dots. The solid rounded boxes highlight content that must be equivalent
for the rule to apply, while the dotted rounded box shows the content preserved by the rule.

nodes headed by n(2) and n(7) for equivalence
(i.e, isomorphism), the right hand side of the rule
is returned, where the root infer-rel, be and
second Bienvenue nodes have been left out, and
the restaurant node n(8) has been retained
under n(2) via an ApposRel.

In comparison to Angrosh and Sid-
dharthan’s (2014) lexical rewrite rules—which
consist simply of a list of edit operations—we
find the clause-combining rules induced by our
approach to be quite readable, thus in principle
facilitating their manual inspection by NLG
developers.

4 Rule Induction Algorithm

In this section, we present the rule induction algo-
rithm at an overview level; for complete details,
see the rule induction code to be released on the
OpenCCG website.4

4http://openccg.sf.net

4.1 Input–Output Pre-Processing

The induction method takes as input pairs of text
plans (taken to be ordered) and sentences realizing
the text plans, and returns as output induced rules,
such as the one just seen in Figure 1. To begin,
the text plans are lexicalized using simple hand-
crafted lexicalization rules, as noted above, yield-
ing initial OpenCCG logical forms (LFs). Mean-
while, the sentences are parsed to LFs serving as
the target output of the rule, after any anaphoric
expressions have been resolved (in an ad hoc way)
with respect to the source LF; in particular, the
LF nodes for the expressions it, its and this CUI-
SINE restaurant are replaced with versions using
the proper name of the restaurant, e.g. LF nodes
for Bienvenue, Bienvenue’s and Bienvenue, which
is a French restaurant.5

5The restaurant name is located by searching for the
first predicate under an Arg0 relation, unless there is a
GenOwn (possessor) relation under it, in which the predi-
cate under GenOwn is returned. This method is generally
reliable, though errors are sometimes introduced when multi-
ple restaurants are mentioned in alternation. A more accurate
method would take alignments into account.
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Input dependency graph for Bienvenue has very
good service. Bienvenue is a French restaurant.
n(0) infer-rel

Arg1
n(1) have [ mood=dcl tense=pres ]

Arg0
n(2) Bienvenue [ num=sg ]

Arg1
n(3) service [ det=nil num=sg ]

Mod
n(4) good
Mod

n(5) very
Arg2
n(6) be [ mood=dcl tense=pres ]

Arg0
n(7) Bienvenue [ num=sg ]

Arg1
n(8) restaurant [ num=sg ]

Det
n(9) a

Mod
n(10) French [ num=sg ]

Output dependency graph for Bienvenue, a French
restaurant, has very good service.
n(1) have [ mood=dcl tense=pres ]

Arg0
n(2) Bienvenue [ num=sg ]

ApposRel
n(8) restaurant [ num=sg ]

Det
n(9) a

Mod
n(10) French [ num=sg ]

Arg1
n(3) service [ det=nil num=sg ]

Mod
n(4) good

Mod
n(5) very

Figure 2: Example input–ouput dependency
graphs for NP-APPOSITION clause-combining
rule

The next step is to align the nodes of the in-
put and output LFs. We have found that a sim-
ple greedy alignment routine works reliably with
the SRC, where nodes with unique lexical matches
are aligned first, and then the remaining nodes are
greedily aligned according to the number of par-
ent and child nodes already aligned. After align-
ment, the parts of the output LF corresponding to
each sentence are rebracketed to better match the
grouping in the input LF (revising an initial right-
branching structure). To rebracket the sentence-
level LFs, the adjacent pair of LFs whose aligned
nodes in the source LF have the minimum path
distance is iteratively grouped together under an
INFER relation until the structure has a single root.

4.2 Edit Analysis and Rule Construction

Following alignment and sentence-level rebrack-
eting, the difference between the input and out-
put dependency graphs is calculated, in terms of

Input dependency graph for Mangia has very good
food quality. Mangia has decent decor.
n(0) infer-rel
Arg1
n(1) have [ mood=dcl tense=pres ]
Arg0
n(2) Mangia [ num=sg ]

Arg1
n(3) quality [ det=nil num=sg ]
Mod
n(4) food [ num=sg ]

Mod
n(5) good
Mod
n(6) very

Arg2
n(7) have [ mood=dcl tense=pres ]
Arg0
n(8) Mangia [ num=sg ]

Arg1
n(9) decor [ det=nil num=sg ]
Mod
n(10) decent

Output dependency graph for Mangia has very
good food quality, with decent decor.
n(1) have [ mood=dcl tense=pres ]
Arg0
n(2) Mangia [ num=sg ]

Arg1
n(3) quality [ det=nil num=sg ]
Mod
n(4) food [ num=sg ]

Mod
n(5) good
Mod
n(6) very

Mod
n(11) with [ emph-final=+ ]
Arg1
n(9) decor [ det=nil num=sg ]
Mod
n(10) decent

Figure 3: Example input–ouput dependency
graphs for WITH-REDUCTION clause-combining
rule

inserted/deleted nodes, relations and attributes.
Next, these edits are analyzed to determine
whether any equivalent nodes have been factored
out—that is, whether a node that is isomorphic to
another one in the input has been removed. For ex-
ample, in Figure 1, nodes C and E are derived from
the isomorphic nodes for the restaurant name NPs,
with node E left out of the output.

Based on the edit analysis, one of four gen-
eral kinds of clause-combining rules may be in-
ferred: two kinds of aggregation rules, one involv-
ing a shared argument and one a shared predica-
tion, as well as two kinds of rules for adding dis-
course connectives based on discourse relations,
one where clausal LFs are combined, and another
where a connective is inserted into the second LF.
The kinds of rules for discourse connectives cor-
respond directly to those in SPaRKy; for aggrega-
tion, shared predication rules correspond to oper-
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rule:
_ one_of(_,[infer-rel,justify-rel]) [ .._.. ]

Arg1
G H [ ..I.. ]

Arg0
C A [ ..B.. ]

...D...
...N...

Arg2
_ have [ .._.. ]

Arg0
E A [ ..B.. ]

...F...
Arg1
J K [ ..L.. ]

...M...

s.t. [equiv(node(C,A,B,D),node(E,A,B,F))]

==>

G H [ ..I.. ]
Arg0
C A [ ..B.. ]

...D...
Mod
_ with [ emph-final=+ ]

Arg1
J K [ ..L.. ]

...M...
...N...

Figure 4: Inferred WITH-REDUCTION clause-
combining rule with generalized lexical con-
straints

ations of the MERGE kind, with shared argument
rules accounting for the rest.

To keep the rule induction straightforward, ex-
actly one node is required to have been factored
out with the aggregation rules, while with the dis-
course connective rules, the edits must be local-
ized to the level directly below the triggering dis-
course relation. When these conditions are satis-
fied, an induced rule is constructed based on the
edits and any applicable constraints. First, the
left hand side of the rule is constructed so that
it matches any deleted nodes, attributes and rela-
tions, as well as the path to both the factored out
node (if any), the one it is equivalent to, and the
parents of any inserted nodes. Along the way, lexi-
cal predicates are included as requirements for the
rule to match, except in the case of factored out
nodes, where it is assumed that the lexical predi-
cate does not matter. Next, the right hand side of
the rule is constructed, leaving out any matched
nodes, attributes or relations to be deleted, while
adding any nodes, attributes or relations to be
inserted. Finally, any applicable constraints are
added to the rule. (Though both kinds of aggrega-
tion rules are triggered off of factored out nodes,
shared predication rules actually involve a stronger
constraint, namely that all but one argument of a
predicate be equivalent.)

4.3 Constraints and Generalization

The constraints included in the aggregation rules
are essential for their accurate application, as
noted earlier. For example, in the absence of
the shared argument constraint for an inferred
RELATIVE-CLAUSE rule, adjacent clauses for So-
nia Rose has good service and Bienvenue has
very good service could be mistakenly com-
bined into Sonia Rose, which has very good ser-
vice, has good service, as nothing would check
whether Sonia Rose and Bienvenue were equiv-
alent. The lexical predicate constraints are also
essential, for example to ensure that only have-
predications are reduced to with-phrases, and that
only be-predications are eligible to become NP-
appositives.

After a first pass of rule induction, the rules are
generalized by combining rules that differ only in
a lexical predicate, and if a sufficient number of
lexical items has been observed (three in our ex-
periments here), the lexical constraint is removed,
much as in Angrosh and Siddharthan’s (2014)
approach. For example, the rule in Figure 4—
induced from the input–output pair in Figure 3 and
others like it—has been generalized to work with
either the infer-rel or contrast-rel rela-
tions, and the predication for the first argument of
the relation (H) has been generalized to apply to
any predicate.

4.4 Rule Interaction During Learning

Since evidence for a rule may not always be di-
rectly available in an input–output pair that illus-
trates the effect of that rule alone, rule induction is
also attempted from all subgraphs of the input and
output that are in an appropriate configuration—
namely, where either the roots of the source and
target subgraphs are aligned, or where at least one
child node of the root of the source subgraph is
aligned with the root of the target subgraph or one
of its children.

Inducing rules from subgraphs in this way is a
noisy process that can yield bad rules, that is, ones
that mistakenly delete or insert nodes for words:
nodes can be mistakenly deleted when the tar-
get subgraph is missing nodes supplying propo-
sitional content in the source, while nodes can be
mistakenly inserted if they supply extra proposi-
tional content not present in the source rather than
discourse connectives or function words, as in-
tended. An example bad deletion rule appears in
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rule:
_ quality [ .._.. ]

Det
E A [ ..B.. ]

...F...
Mod
G among [ ..H.. ]

Arg1
I restaurant [ ..J.. ]

Det
C A [ ..B.. ]
...D...

...K...
...L...

Mod
_ best [ .._.. ]

Mod
_ overall [ .._.. ]

s.t. [equiv(node(C,A,B,D),node(E,A,B,F))]

==>

G among [ ..H.. ]
Arg1
I restaurant [ ..J.. ]

Det
C A [ ..B.. ]

...D...
...K...

...L...

Figure 5: An undesirable rule that mistakenly re-
duces the best overall quality among the selected
restaurants to among the selected restaurants, in-
duced from LF subgraphs for these phrases

Figure 5. Another common cause of bad rules
is errors in parsing the target sentences, espe-
cially longer ones. To lessen the prevalence of
bad induced rules, we take inspiration from work
on learning semantic parsers (Kwiatkowksi et al.,
2010; Artzi and Zettlemoyer, 2013) and embed the
process of inducing clause-combining rules within
a process of learning a model of preferred deriva-
tions that use the induced rules. The model is
learned using the structured averaged perceptron
algorithm (Collins, 2002), with indicator features
for each rule used in deriving an output LF from
and input LF. With each input–output pair, the cur-
rent model is used to generate the highest-scoring
output LF using a bottom-up beam search. If the
highest-scoring output LF is not equal to the tar-
get LF, then the search is run again to find the
highest-scoring derivation of the target LF, using
the distance to the target to help guide the search.
When the target LF can be successfully derived,
a perceptron update is performed, adjusting the
weights of the current model by adding the fea-
tures from the target LF derivation and subtracting
the ones from the highest-scoring non-target LF.
At the end of all training epochs, the parameters
from the final model and all the intermediate mod-
els are averaged, which approximates the margin-

For input–output pairs satisfying increasing size
limits:

1. Direct Epoch Starting with an empty model,
clause-combining rules are induced directly
from input–output pairs.

2. Generalization The current set of rules is
generalized and the training examples are re-
visited to update the weights for the newly
added rules. Subsumed rules are removed,
and the initial weight of the generalized rule
is set to the maximum weight of the sub-
sumed rules.

3. Subgraphs Epoch Rules are induced from
all applicable subgraphs of the input–output
pairs.

4. Generalization As above.

5. Partial Epoch For any examples where the
target LF cannot be generated with the cur-
rent ruleset, rules are induced from an n-best
list of partially completed outputs paired with
the target LF.

6. Generalization As above.

7. Pruning After switching to the final aver-
aged model, any rules not used in the highest-
scoring derivation of an example are pruned.

Figure 6: Algorithm Summary

maximizing voted perceptron algorithm.
It is often the case that desired rules cannot be

induced either directly from an input–output pair
or from their subgraphs: instead, other learned
rules need to be applied to the input before the ex-
ample illustrates the desired step.6 Accordingly,
for input–output pairs that cannot be derived with
the current set of rules, we generate an n-best list
of outputs and then attempt to induce a rule by
pairing each partially complete output with the tar-
get LF as an input–output pair.

6Consider a text realizing the same content as (1) and (2)
in addition to the content in Sonia Rose is an Italian restau-
rant. A single sentence realization of this content is Sonia
Rose, an Italian restaurant, has good decor and good ser-
vice. In order to learn NP-APPOSITION from this input–
output pair, the system must first have learned and applied
a MERGE rule to (1) and (2) so that the structures are suffi-
ciently parallel for inference to proceed.
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4.5 Staged Learning
A summary of the rule induction algorithm ap-
pears in Figure 6. In the outermost loop, the al-
gorithm is run over input–output pairs that meet a
given size limit on the output LF, with this limit
increasing with each iteration. Since during devel-
opment we found that rules induced (i) directly,
(ii) from subgraphs and (iii) from partially com-
pleted inputs were of decreasing reliability, such
rules are induced in separate training epochs in
that order. A final pruning step removes any rules
not used in the highest-scoring derivation of an
input–output pair, using the averaged model. The
pruning step is expected to remove most of the
bad rules involving undesirable node insertions or
deletions, as they are typically downweighted by
the perceptron updates.

5 Evaluation

5.1 Data preparation
We convert the text plans used in Walker et al.
(2007) to a more concise logical representation as
described in Section 3.

Using OpenCCG’s broad-coverage grammar,
we then parse the SRC realizations correspond-
ing to these text plans, resulting in one LF for
each sentence in the SRC. Since nearly all realiza-
tions in the SRC include multiple sentences, this
results in multiple LFs for each. In order to com-
bine these sentence-level LFs into a single sen-
tence plan LF (SENTLF), we impose an initial bi-
nary right-branching structure over the LFs and
label the resulting superstructure nodes with the
infer-rel predicate. As noted in Section 4, the
initial right-branching structure is subsequently re-
bracketed to better match the rhetorical structure
in the of the text plan LF (TPLF).

5.2 Dev, Training, and Test Splits
We limit our attention to realizations in the SRC
containing 5 or fewer sentences and only one sub-
ject per sentence.7 Of the 1,760 sparky pairs in the
SRC, we used a set of 73 sparky pairs for develop-
ment, defining a sparky pair as the TPLF–SENTLF
pair corresponding to a single sparky alternative.
These pairs were used primarily for debugging and
testing and are not used further in the evaluation.

7The only multi-subject sentences in the SRC are of the
form, “Restaurant A, (Restaurant B, ...,) and Restaurant N
offer exceptional value among the selected restaurants” and
do not add to the variety of clause-combining operations of
interest to us.
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Figure 7: Manual evaluation of the quality of the
top 20 rules as good, overspecified (but still valid)
or bad, for training increments of increasing size

We use 700 sparky pairs for the training and test
sets and reserve the remaining sparky pairs for fu-
ture work. The training set consists of 200 sparky
pairs used for rule induction, where we incremen-
tally add 20 pairs at a time to the training set to
evaluate how much training data is necessary for
our approach to work. The test set consists of 500
sparky pairs for use in evaluating the coverage of
the rules inferred during training.

5.3 Quality of Learned Rules

In our first evaluation we evaluate the rate of rule
acquisition. We present the algorithm first with
20 sparky pairs and then add an additional 20
sparky pairs in each iteration, resulting in 10 sets
of learned rules to compare to each other. This
allows us to see how well new data allows the al-
gorithm to generalize the induced rules.

To evaluate the quality of the learned rules, we
conducted a manual evaluation of the top 20 rules
as ranked by the perceptron model. We report the
proportion of these rules rated as good, overspeci-
fied (more specific than desired, but still valid) or
bad in Figure 7. As the figure shows, the propor-
tion of good rules increases relative to the over-
specified ones, with the proportion of bad rules re-
maining low. With the full training set, a total of
46 rules are learned, almost equally split between
good, overspecified and bad (15/17/14, resp.).

In examining the learned rules, we observe that
the learning algorithm manages to diminish the
number of highly-ranked bad rules with spurious
content changes, as these only infrequently con-
tribute towards deriving a target LF. However, the
presence of bad rules owing to parse errors per-
sists, as certain parse errors occur with some reg-
ularity. As such, in future work we plan to investi-
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gate whether learning from n-best parses can man-
age to better work around erroneous parses.

5.4 Coverage
The first question of coverage is straighforward:
do the rules we learn recover all of the types
of clause-combining operations used by SPaRKy?
Manual evaluation reveals good coverage for
all five kinds of clause-combining operations in
the top 20 rules of the final model. WITH-
REDUCTION, MERGE, CUE-WORD-INSERTION,
and CUE-WORD-CONJUNCTION (for all connec-
tives in the corpus) are covered by good rules,
i.e. ones that are comparable in quality to the
kind we might write by hand. In addition to
these good rules, WITH-REDUCTION and CUE-
WORD-CONJUNCTION are also represented in sev-
eral overspecified rules. RELATIVE-CLAUSE is
only represented by overspecified rules.8

Additionally, in order to assess the extent to
which the learned rules cover the contexts where
the SPaRKy clause-combining operations can be
applied in the SRC, we also applied the final set
of learned rules to all of the input TPLFs in the
test set. The test set contained 453 usable input
pairs,9 of which we were able to exactly repro-
duce 229 using the inferred rules. Naturally, we do
not expect 100% coverage here as the test set will
also contain some LFs suffering from parse errors,
though this coverage level suggests our method
would benefit from a larger training set. Impor-
tantly, applying the learned rules to the test set in-
put generated 19,058 possible sentLFs (or 40 out-
put LFs per input LF, on average), a sufficiently
large number for a sentence plan ranker to learn
from.

5.5 Experimenting with other
clause-combining operations

Using a single-stage version of the algorithm,
we also examined its capabilities with respect to
learning clause-combining operations not present
in the SRC. To create training examples, we cre-
ated 167 input pairs based on TPLFS from the SRC

8Naturally elements of these rules are also present in some
of the genuinely bad rules that remain in the final model.
Even in these bad rules, however, the operations are appro-
priately constrained: WITH- REDUCTION is predicated on the
use of have and CUE-WORD-INSERTION of on the other hand
on the use of contrast-rels and of since on the use of
justify-rels.

9Of the original 500 pairs, we excluded 29 pairs larger
than the maximum size used in our staged learning, as well
as 18 pairs where the target realization could not be parsed.

using set of 16 hand-crafted rules including all the
clause-combining operations pictured in Table 2.
From these 167 pairs the algorithm induced 22
clause-combining operations, fully covering the
16 hand-crafted rules with some overspecification.
Importantly, this preliminary finding suggests that
developers can use this system to acquire a larger
variety of clause-combining operations than those
represented in the SRC with less need for exten-
sive knowledge engineering.

6 Conclusions and Future Work

We have presented a clause-combining rule in-
duction method that learns how to rewrite lexico-
semantic dependency graphs in ways that go be-
yond current end-to-end NLG learning methods
(Angeli et al., 2010; Konstas and Lapata, 2013),
an important step towards ameliorating the knowl-
edge acquisition bottleneck for NLG systems that
produce texts with rich discourse structures. Fu-
ture work will evaluate the system on multiple
domains and push into the realm of robust, si-
multaneous induction of lexicalization, clause-
combining and referring expression rules.
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