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Abstract

Semantic lexicons such as WordNet and
PPDB have been used to improve the
vector-based semantic representations of
words by adjusting the word vectors.
However, such lexicons lack semantic in-
tensity information, inhibiting adjustment
of vector spaces to better represent seman-
tic intensity scales. In this work, we ad-
just word vectors using the semantic inten-
sity information in addition to synonyms
and antonyms from WordNet and PPDB,
and show improved performance on judg-
ing semantic intensity orders of adjective
pairs on three different human annotated
datasets.

1 Introduction

Word embedding models that represent words
as real-valued vectors have been directly used
in word-level NLP tasks such as word similar-
ity (Mikolov et al., 2013b), antonym detection
(Ono et al., 2015; Pham et al., 2015; Chen
et al., 2015), knowledge relations (Toutanova et
al., 2015; Socher et al., 2013; Bordes et al.,
2013), and semantic scale inference (Kim and de
Marneffe, 2013). Word embedding models such
as Word2Vec (continuous bag-of-words (CBOW)
and skip-gram) (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014), widely used to gener-
ate word vectors, are trained following the distri-
butional hypothesis (Harris, 1954) which assumes
that the meaning of words can be represented by
their context.

However, word embedding models based solely
on the distributional hypothesis often place words
improperly in vector spaces. For example, in a
vector space, a word and its antonym should be
sufficiently far apart, but they can be quite close

because they can have similar contexts in many
cases.

For better semantic representations, different
approaches using semantic lexicons as well as lex-
ical knowledge to adjust word vectors have re-
cently been introduced. Faruqui et al. (2015)
adjusted each word vector to be in the middle
between the initial position and its synonymous
words. Mrkšić et al. (2016) used max-margin
approaches to adjust each word vector with syn-
onyms and antonyms while keeping the relative
similarities to the neighbors. While these two ap-
proaches are post-processing models that adjust
preexisting word vectors, Ono et al. (2015), Pham
et al. (2015), and Liu et al. (2015) jointly train
models that augment the skip-gram (Mikolov et
al., 2013a) objective function to include knowl-
edge from semantic lexicons. The common goal
in these approaches is to make semantically close
words closer and semantically distant words far-
ther apart while keeping each word vector not to
be too far from the original position. Although
the joint training models can even indirectly adjust
words that are not listed in the semantic lexicons
(Pham et al., 2015), the post-processing models
are much more efficient and can be applied to word
vectors from any kinds of models, which can even-
tually perform better than the joint training models
(Mrkšić et al., 2016).

Although Faruqui et al. (2015), Mrkšić et al.
(2016), Ono et al. (2015), Pham et al. (2015),
and Liu et al. (2015)’s adjustment approaches have
been shown to represent word semantics better
in vector spaces, their coarse modeling of words
as synonyms or antonyms may be insufficient for
modeling words lying along a semantic intensity
scale. For example, assume that “great” is er-
roneously between “bad” and “good” in a vec-
tor space (“bad” should be closer to “good” than
“great”). Since semantic lexicons such as Word-
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Net (Fellbaum, 1998) and the Paraphrase Database
(PPDB) (Pavlick et al., 2015) only inform us that
“good” and “great” are semantically similar and
“good” is semantically opposite to “bad”, adjust-
ing word vectors with those semantic lexicons
does not permit to retrieve the appropriate seman-
tic intensity ordering: bad < good < great.

Accurate representation of such semantic inten-
sity scales can help correct processing in down-
stream tasks that require robust textual under-
standing. For instance, given an assertion such as
the movie is outstanding, statements that contain a
semantically weaker expression (e.g., the movie is
good, the movie is okay) are entailed, whereas the
movie is okay does not entail that the movie is out-
standing. Similarly, correct information about se-
mantic scales can also provide accurate inferences:
when answers to a yes/no question that contains a
gradable adjective does not explicitly contain a yes
or a no, we can derive the intended answer by fig-
uring out whether the answer entails or implicates
the question (Horn, 1972; Hirschberg, 1985; de
Marneffe et al., 2010). For example, for the ques-
tion Was the talk good?, if the answer is It was ex-
cellent, the answer entails “yes”, but if the answer
is It was okay, “no” will be implied.

To deal with the representation of semantic in-
tensity scales, we infer semantic intensity orders
with de Melo and Bansal (2013)’s approach and
then use the intensity orders to adjust the word
vectors. Evaluating on three different human an-
notated datasets, we show that the adjustment with
intensity orders in addition to adjustments with
synonyms and antonyms performs best in repre-
senting semantic intensities.

2 Adjusting word embeddings with
semantic lexicons

In this study, we start from one of three different
off-the-shelf word vector types as a baseline for
our studies: GloVe, CBOW, and Paragram-SL999
(Wieting et al., 2015); we adjust each of these
sets of vectors with a variety of contrastive meth-
ods. Our first contrastive system is a baseline us-
ing synonyms and antonyms (“syn&ant”) follow-
ing Mrkšić et al. (2016)’s approach, which adjusts
word vectors so that the sum of the following three
max-margin objective functions are minimized.

Adjusting with antonyms We adjust word vec-
tors so that the cosine similarity between each

word and its antonyms is zero or lower:

AF (V ) =
∑

(u,w)∈A

τ (cos (vu, vw)) , (1)

where τ (x) = max (0, x), V is the vocabulary
matrix, A is the set of antonym pairs, and vi is the
i-th row of V (i-th word vector). The antonym
pairs consist of the antonyms from WordNet and
Exclusion relations from PPDB word pairs.

Adjusting with synonyms We let the cosine
similarities between each word and its synonyms
be increased:

SC (V ) =
∑

(u,w)∈S

τ (1− cos (vu, vw)) , (2)

where S is the set of synonym pairs. The syn-
onym pairs consist of the Equivalence relations
from PPDB word pairs.

Keeping the similarity to the initial neighboring
words We encourage the cosine similarity be-
tween the initial vectors of each word and a neigh-
bor word to be equal to or higher than the current
cosine similarity between them:

KN
(
V, V 0

)
=

N∑
i=1

∑
j∈N(i)

τ
(
cos (vi, vj)− cos

(
v0
i , v

0
j

))
, (3)

where V 0 is the initial vocabulary matrix, N is
the vocabulary size, and N (i) is the set of the
initial neighbors of the i-th word. Word pairs with
cosine similarities equal to or higher than 0.8 are
regarded as neighbors.

The objective function for the word vector adjust-
ment is represented as the sum of the three terms:

C
(
V, V 0

)
= AF (V ) + SC (V ) +KN

(
V, V 0

)
(4)

This function is minimized with stochastic gradi-
ent descent with learning rate 0.1 for 20 iterations.

3 Adjusting word embeddings with
semantic intensity orders

In order to better model semantic intensity order-
ing, we augment the synonym and antonym ad-
justed model with semantic intensity information
to adjust word vectors. We first cluster semanti-
cally related words, infer semantic intensity orders
of words in each cluster, and then adjust word vec-
tors based on the intensity orders.
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3.1 Clustering words for intensity ordering

de Melo and Bansal (2013) used WordNet dumb-
bells (Gross and Miller, 1990), each of which con-
sists of an adjective antonym pair and each adjec-
tive’s synonyms, to define a set of words along a
semantic intensity scale. Words in each half of
a dumbbell form a cluster. This clustering is ef-
fective since synonyms are semantically highly re-
lated but their intensities may be different. How-
ever, this approach can only cluster words listed in
WordNet.

Shivade et al. (2015) clustered word vectors
from the CBOW model with k-means++ cluster-
ing (Arthur and Vassilvitskii, 2007). This ap-
proach depends on the current word vector place-
ment and does not require semantic lexicons.
However, a word can only belong to one cluster
since k-means++ is a hard clustering, thus caus-
ing issues with polysemous words. For example,
“hot” is both on the temperature scale (e.g., It’s
hot today) and on the interestingness scale (e.g.,
It’s a hot topic). If “hot” is adjusted for the for-
mer scale, “hot” may not properly be placed on
the latter scale. Another issue of using clustering
algorithms is that unrelated or antonymous words
can belong to a cluster, which may hinder correct
intensity ordering.

We evaluated both clustering approaches and
their combination to cluster words for intensity or-
ders. In Table 2, by default, WordNet dumbbells
and Equivalence relations of PPDB word pairs are
used as the intensity clusters. “kmeans only” de-
notes that only clusters from k-means++ are used,
and “+kmeans” means that WordNet, PPDB, and
clusters from k-means++ are used altogether. Fol-
lowing Shivade et al. (2015), when clustering with
k-means++, we set k to be 5,798, which is the
number of all observed adjectives (17,394) divided
by 3 so that the average number of adjectives in a
cluster is 3.

3.2 Inferring intensity ordering

We follow de Melo and Bansal (2013)’s approach
to order the adjectives in each cluster. For every
possible pair of adjectives in the cluster, we search
for regular expressions like “〈∗〉 but not 〈∗〉” in
Google N -gram (Brants and Franz, 2006). These
patterns give us the direction of the ordering be-
tween the adjectives. For example, if “good but
not great” appears frequently in Google N -gram,
we infer that “great" is semantically stronger than

“good".1 Once we have the intensity differences
of adjective pairs in a cluster, mixed integer linear
programming (MILP) is used for optimal ordering
of all the adjectives in the cluster given the pair-
wise intensity information of the adjective pairs,
following de Melo and Bansal (2013).

3.3 Adjusting word vectors based on
intensity orders

Now that we have word clusters whose constituent
words are ordered according to their semantic in-
tensities, we adjust the word vectors in two ways,
as follows.

3.3.1 Adjusting words with the same
intensity order to be closer

When intensity orders are assigned to words in a
cluster, different words can have the same rank.
For example, given a word cluster {“interesting”,
“provocative”, “exciting”, “sexy”, “exhilarating”,
“thrilling”}, both “exhilarating” and “thrilling”
are assigned the highest order, and “exciting”
and “sexy” are assigned the second highest order.
Since words in a same cluster are considered to be
very close in both the meaning and the intensity,
it is desirable to let them to be similar in the vec-
tor space. Therefore, we formulate a max-margin
function:

SO (V ) =
∑

(u,w)∈E

τ (1− cos (vu, vw)) , (5)

where E is the word pairs of the same intensities
from the intensity clusters.

3.3.2 Adjusting weaker/stronger word pairs
based on antonyms

For two similar words with different intensities
(e.g., “good” and “great”), the similarity between
the weaker word vector and its antonym vector
should be higher than the similarity between the
stronger word vector and the antonym vector. Fig-
ure 1 shows an example of word vectors which are
wrongly ordered.

To reduce wrong orderings, we formulate a

1Shivade et al. (2015) used Tregex (Levy and Andrew,
2006) to extract patterns including more words but it is not
necessary when we extract patterns from phrases consisting
of less or equal to five words.
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great
bad

good

Figure 1: An example of incoherent word vector
positions, where “bad” should be closer to “good”
than “great” but the similarity between “bad” and
“good” is lower than the similarity between “bad”
and “great”.

max-margin function:

AO (V ) =∑
(w,a)∈A

∑
s∈Str(w)

τ {cos (vs, va)− cos (vw, va)} ,

(6)

where A is the set of antonym pairs and Str (w)
is a set of words semantically stronger than w. By
minimizing this function, out-of-order vectors are
adjusted so that the stronger word vector gets far-
ther from the antonym vector and the weaker word
vector gets closer to the antonym vector.

Both equations 5 and 6 can be either solely used
or summed to others like equation 4 to serve as a
term of the objective function.

4 Evaluation

We evaluate the representation of semantic in-
tensities on the three following human-annotated
datasets.

4.1 WordNet synset pairs

We obtained a dataset of 670 synonymous adjec-
tive pairs coming from synsets in WordNet from
Christopher Potts. Each adjective pair was an-
notated for intensity order on Mechanical Turk.
For each adjective pair <A, B> (e.g., “good” and
“great”), ten different Turkers were asked to judge
whether A is semantically stronger than B, B is
semantically stronger than A, or A is equal to
B. For consistency of annotation with the other
datasets, we mapped “A is semantically stronger
than B" to “no”, “B is semantically stronger than
A" to “yes”, and “A is equal to B" to “uncertain”.

For 77.3% of adjective pairs, at least 6 out of
the 10 Turkers agreed with each other on the same
annotation. Table 1 gives a breakdown of how
often Turkers agree with each other. The inter-

Max # Turkers agreeing Coverage (%)

10 17.5
9 17.2
8 13.3
7 14.6
6 14.9
5 16.7
4 6

Table 1: Percentage of adjective pairs and the
maximum number of Turkers who agree with each
other on the annotation.

annotator agreement (Fleiss’ kappa) of this dataset
is 0.359. Note that Fleiss’ kappa is a very conser-
vative measure given the partial order in the anno-
tation, which is not taken into account in Fleiss’
kappa.

4.2 Indirect question-answer pairs (IQAP)

IQAP (de Marneffe et al., 2010) is a corpus con-
sisting of 127 indirect question-answer pairs in
which both the question and the answer contain
a gradable adjective (Is Obama qualified? I think
he’s young.). For each pair, 30 Turkers decided
whether the answer implies a “yes”, “no” or “un-
certain" response to the question. A majority
“yes” response implies that the adjective in the
question entails the adjective in the answer.

The ordering between the adjectives in the ques-
tion and in the answer can be used to infer a “yes"
or “no" answer: if the adjective in the answer is
semantically equivalent or stronger to the adjec-
tive in the question, we infer a “yes” answer (Was
the movie good? It was excellent.); if not, we infer
a “no” answer.

4.3 Word intensity orders in clusters

We also use the test set from de Melo and Bansal
(2013) consisting of 507 pairs of adjectives in 88
clusters annotated by two native English speakers
for intensity ordering. From this set, we generated
all the possible adjective pairs from the ordered
list in a cluster. For example, for “known” < “fa-
mous” < “legendary” in the test set, we generated
“known” < “famous”, “known” < “legendary”,
and “famous” < “legendary”.

4.4 Evaluation results

In our evaluation of the semantic orderings of ad-
jective pairs, we decide which adjective in a pair
<A, B> is semantically stronger following Kim
and de Marneffe (2013)’s approach. First, we look
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Adjustment methods WordNet synset pairs IQAP de Melo & Bansal (2013)

GloVe CBOW Pgrm GloVe CBOW Pgrm GloVe CBOW Pgrm

baseline 0.5614 0.5092 0.5224 0.7044 0.7016 0.7591 0.9468 0.9347 0.9803
syn&ant 0.5106 0.5516 0.5572 0.8143 0.8045 0.8307 0.9632 0.9444 0.9791
same_ord (kmeans only) 0.5762 0.5163 0.5196 0.7044 0.7016 0.7473 0.9480 0.9359 0.9791
same_ord, diff_ord 0.5505 0.5331 0.5167 0.7119 0.6889 0.7718 0.9456 0.9371 0.9701
syn&ant,same_ord 0.5364 0.5639 0.5782 0.7922 0.7818 0.8284 0.9632 0.9492 0.9803
syn&ant,diff_ord 0.5300 0.5551 0.5765 0.8143 0.7922 0.8307 0.9735 0.9539 0.9825
syn&ant,same_ord,diff_ord 0.5467 0.5730 0.5960 0.8143 0.8033 0.8395 0.9758 0.9539 0.9825
syn&ant,same_ord,diff_ord
(kmeans only) 0.5186 0.5516 0.5729 0.8033 0.8045 0.8194 0.9609 0.9468 0.9803

syn&ant,same_ord,diff_ord
(+kmeans) 0.5512 0.5828 0.5960 0.8033 0.8033 0.8395 0.9735 0.9609 0.9814

Table 2: F1 scores for determining semantic intensity ordering on three datasets, across three baseline
models (GloVe, CBOW, Paragram), using different compositions of adjustment techniques, including
synonyms, antonyms, same intensity orders, and different intensity orders.

Datasets # pairs # syn # ant

WordNet synset pairs 670 79 0
IQAP 127 7 9

de Melo & Bansal 507 54 1

Table 3: The numbers of total adjective pairs, syn-
onymous pairs, and antonymous pairs for each
dataset.

for an antonym ofA.2 Then, we check whether the
word vector for B is more similar to the vector for
A than to the vector for A’s antonym, or whether
the vector for B is more similar to the vector for
A’s antonym. We infer a “yes” answer in the for-
mer case, and a “no” in the other case. If A has
more than one antonym, we select the antonym
that is most collinear with the vectors for A and B
assuming that the most collinear antonym is most
semantically related to A and B.

Table 2 shows the F1 scores of different combi-
nations of the adjustments on the three datasets,3

whereas Table 3 shows the number of total adjec-
tive pairs in each dataset, as well as the number
of pairs in which both adjectives are synonyms
(Equivalence relations from PPDB) and the num-
ber of pairs in which both adjectives are antonyms
(Exclusion relations from PPDB and antonyms
from WordNet).

Expanding on the results in Table 2, as the base-
lines, we used three different 300 dimensional

2If there are no antonyms of A in WordNet, we obtain
antonyms from Roget’s thesaurus (Kipfer, 2009).

3For simplicity of the evaluation in vector spaces, we cal-
culate F1 scores without “uncertain” cases.

off-the-shelf word vectors: GloVe,4 CBOW,5

and Paragram-SL999.6 Following Mrkšić et al.
(2016), for each of the word vector sets, we ex-
tracted word vectors corresponding to the 76,427
most frequent words from Open-Subtitles.7

Table 4 indicates whether the differences in per-
formance of the adjustment methods in Table 2 are
statistically significant (McNemar’s χ2 test with p-
value < 0.05). In the table, “merged” columns are
the results of the concatenation of all the datasets.
For each comparison, ‘+’ denotes that the per-
formance of the latter is significantly higher than
that of the former, and ‘-’ denotes the opposite,
whereas no value indicates that the difference in
performance is not statistically significant. For
Paragram vectors, only one case (“baseline” vs
“syn&ant,same_ord") is significantly different.

In Table 2, “baseline” shows the performance
of the baseline word vectors without any adjust-
ments. Since Paragram-SL999 are optimized to
perform best on evaluating SimLex-999 dataset,
the baseline performance of Paragram-SL999 on
SimLex-999 as well as two of the other datasets
are noticeably better than word vectors from
GloVe and CBOW.

In “syn&ant”, corresponding to the optimiza-
tion with equation 4, 15,509 words are adjusted
with the synonyms and 6,162 words are adjusted
with the antonyms. This adjustment significantly

4Available from http://nlp.stanford.edu/
projects/glove/

5Available from https://code.google.com/p/
word2vec/

6Available from https://drive.google.com/
file/d/0B9w48e1rj-MOck1fRGxaZW1LU2M/

7Available from invokeit.wordpress.com/
frequency-word-lists
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Compared adjustment methods GloVe CBOW
WN IQAP dM&B merged WN IQAP dM&B merged

baseline v. syn&ant - + + +
baseline v. syn&ant,same_ord,diff_ord - + + + + +
syn&ant v. syn&ant,same_ord,diff_ord + +
baseline v. syn&ant,same_ord,diff_ord (+kmeans) + + + + +
syn&ant v. syn&ant,same_ord,diff_ord (+kmeans) + + + +

Table 4: McNemar’s χ2 test results (p-value < 0.05) for different methods of GloVe/CBOW adjustments
across WordNet synset (WN), IQAP, and de Melo & Bansal (dM&B) datasets, as well as concatenating
the three datasets (merged). For x v. y, ‘+’ denotes that y’s score is significantly higher than that of x,
‘’-’ denotes the opposite, and no value denotes that the difference is not statistically significant.

improves the performance of CBOW vectors and
Paragram vectors on the IQAP and de Melo and
Bansal (2013)’s datasets. Specifically, for the
IQAP dataset, where many of the pairs are either
synonyms or antonyms, “syn&ant” showed better
performance than including adjustments with se-
mantic intensity orders. However, this adjustment
makes GloVe vectors yield significantly worse
performance on the WordNet synset pair dataset.
This shows that the adjustment with just synonyms
and antonyms can worsen the representation of
subtle semantics considering intensities. In this
case, using just the adjustment with semantic in-
tensity orders can be helpful. “same_ord (kmeans
only)”, corresponding to equation 5, adjusts word
vectors by just making vectors of words with the
same intensity order to be more similar without
using synonyms and antonyms. For GloVe vec-
tors, “same_ord (kmeans only)” showed the high-
est score for the WordNet synset pair dataset.
For adjustments with semantic intensity orders,
616 words are adjusted when WordNet dumbbells
and Equivalence relations from PPDB word pairs
are used as the clusters. When clusters from k-
means++ are used, several hundreds of words are
adjusted, where the adjusted words vary depend-
ing on the vector space for each iteration.

For the WordNet synset pair dataset and de
Melo and Bansal (2013)’s dataset, where the sub-
tle semantic intensity differences are more critical,
using synonyms, antonyms, and semantic intensity
orders altogether (“syn&ant,same_ord,diff_ord”)
showed significantly higher scores than “syn&ant”
in many settings. Here, “diff_ord” corresponds to
equation 6.

Table 5 shows the adjective pairs whose inten-
sity judgements were changed by including ad-
justments with semantic intensity orders. The
pairs are from the WordNet synset pairs and

baseline v.
same_ord (kmeans only)

syn&ant v. syn&ant,
same_ord,diff_ord(+kmeans)

satisfactory < superb mediocre < severe
unfavorable < poor troublesome < rocky
crazy < ardent upfront < blunt
outspoken < expansive solid < redeeming
sad < tragic warm < uneasy
deserving < sacred valuable < sacred

Table 5: Adjective pairs whose incorrect decisions
with the former models are corrected by the latter
models. For those model comparisons, there were
no pairs that were correctly judged with the former
models but not with the latter models.

GloVe vectors were used as the baseline. “base-
line” is compared to “same_ord (kmeans only)”
in the first column and “syn&ant” is compared to
“syn&ant,same_ord,diff_ord(+kmeans)”. In both
cases, we observe that some of the incorrectly
judged pairs are corrected when adding the ad-
justment with semantic intensity orders. In these
cases, there were no pairs that were correctly
judged by the adjustments without semantic inten-
sity orders but incorrectly judged with semantic
intensity orders.

Since the numbers of adjectives pairs in the
datasets and the numbers of words that are ad-
justed with semantic intensity orders are small, not
all the cases comparing the adjustments using just
synonyms and antonyms to the adjustments in-
cluding semantic intensity orders were significant
for p-value < 0.05, as shown in Table 4. However,
since many of them are slightly insignificant (like
p-value=0.07) and the scores noticeably increased
in many cases, using semantic intensity orders for
the adjustments seem promising.

In addition, to show that the adjustments are
not harmful for the representation of the gen-
eral semantics of the words, we also evaluated on
SimLex-999 (Hill et al., 2015), where 999 word
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GloVe CBOW Pgrm

baseline 0.4453 0.4567 0.6920
syn&ant 0.5969 0.5768 0.7268
same_ord (kmeans only) 0.4420 0.4585 0.6926
same_ord, diff_ord 0.4522 0.4613 0.6872
syn&ant,same_ord 0.5969 0.5768 0.7261
syn&ant,diff_ord 0.5958 0.5767 0.7274
syn&ant,same_ord,diff_ord 0.5962 0.5773 0.7271
syn&ant,same_ord,diff_ord
(kmeans only) 0.5980 0.5769 0.7269

syn&ant,same_ord,diff_ord
(+kmeans) 0.5956 0.5771 0.7273

Table 6: Spearman’s ρ on SimLex-999.

pairs were annotated on Mechanical Turk to score
the degree of semantic similarities. This dataset
has been widely used to evaluate the quality of se-
mantic representations of words.

Table 6 shows Spearman’s ρ scores on the
SimLex-999 dataset for the different adjustment
methods. Since SimLex-999 dataset is not di-
rectly related to semantic intensities compared to
the other evaluation datasets, there were no signifi-
cant gains for the adjustments with semantic inten-
sity orders. However, no significant drops indicate
that the adjustments with semantic intensity orders
are not harmful for the representation of general
word semantics.

5 Discussion and Conclusion

In this work, we adjusted word vectors with in-
ferred semantic intensity orders as well as infor-
mation from WordNet and PPDB, and showed that
adjusting word vectors with semantic intensity or-
ders, synonyms, and antonyms altogether showed
the best performance for all the three datasets we
evaluated on. Using the semantic intensity orders
for adjusting word vectors can help represent se-
mantic intensities of words in vector spaces. In
addition, we showed the adjustments including se-
mantic intensity orders are not harmful for the rep-
resentation of semantics in general by evaluating
on SimLex-999.

In future work, we plan to investigate cluster-
ing techniques beyond WordNet dumbbells and k-
means++ as preprocessing in the semantic order-
ing. The clusters using WordNet dumbbells de-
pend on a preexisting semantic lexicon that may
not cover all the semantically related words. With
k-means++, clusters may contain semantically op-
posite words and a word can belong to only one
cluster. As both techniques have limitations, by

using another clustering method, the performance
could be further improved. In addition, we plan to
use larger corpora than GoogleN -gram so that we
can find more intensity orderings within clusters.
We can also further improve the performance by
using semantic intensity information from other
linguistic resources. For example, given a list of
base, comparative, and superlative forms of ad-
jectives and adverbs, we can let those adjectives
aligned more correctly in vector spaces. We can
also use word definitions from dictionaries. For
example, from American Heritage Dictionary, one
of the definitions of “furious” is “extremely angry”
and one of that of “excellent” is “exceptionally
good”. Therefore, by analyzing word definitions,
we can obtain word intensity orders.
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