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Abstract

This paper describes our submission to the
shared task on word/phrase level Qual-
ity Estimation (QE) in the First Con-
ference on Statistical Machine Trans-
lation (WMT16). The objective of
the shared task was to predict if the
given word/phrase is a correct/incorrect
(OK/BAD) translation in the given sen-
tence. In this paper, we propose a novel
approach for word level Quality Esti-
mation using Recurrent Neural Network
Language Model (RNN-LM) architecture.
RNN-LMs have been found very effective
in different Natural Language Processing
(NLP) applications. RNN-LM is mainly
used for vector space language model-
ing for different NLP problems. For this
task, we modify the architecture of RNN-
LM. The modified system predicts a label
(OK/BAD) in the slot rather than predict-
ing the word. The input to the system is
a word sequence, similar to the standard
RNN-LM. The approach is language in-
dependent and requires only the translated
text for QE. To estimate the phrase level
quality, we use the output of the word level
QE system.

1 Introduction

Quality estimation is the process to predict the
quality of translation without any reference trans-
lation (Blatz et al., 2004, Specia et al., 2009).
Whereas, Machine Translation (MT) system eval-
uation does require references (human transla-
tion). QE could be done at word, phrase, sen-
tence or document level. This paper describes the
submission to the shared task on word and phrase
level QE (Task 2) for English-German (en-de) MT.

The shared task has the trace of last five years’ re-
search in the field of QE (Callision-Burch et al.,
2012; Bojar et al., 2013; Bojar et al., 2014; Bojar
et al., 2015).

In recent years, RNN-LM has demonstrated ex-
ceptional performance in a variety of NLP applica-
tions (Mikolov et al., 2010; Mikolov et al., 2013a;
Mikolov et al., 2013b; Socher et al., 2013a; Socher
et al., 2013b). The RNN-LM represents each
word as high-dimensional real-valued vectors, like
the other continuous space language models such
as feed forward neural network language models
(Schwenk and Gauvain, 2002; Bengio et al., 2003;
Morin and Bengio, 2005; Schwenk, 2007) and Hi-
erarchical Log-Bi-linear language models (Minh
and Hinton, 2009).

In this paper, we have used a modified version
of RNN-LM, which accepts the word sequence
(context window) as input and predicts label at the
output for the middle word. For example, let us
consider the following input/output sample:

English (MT input): Layer effects are retained
by default .

German (MT output): ” Effekte sind standard-
mig beibehalten .

German (Post-edited): Ebeneneffekte werden
standardmig beibehalten .

Tags: BAD BAD BAD OK OK OK
Now if we have to predict the output tag (BAD)

for the word “sind” in the MT output, our in-
put sequence to the RNN-LM will be “Effekte
sind standardmig” (if context window size is 3).
Whereas, for standard RNN-LM model, “Effekte
standardmig” would be the input to the network
with “sind” as the output. We add padding at
the start and end of the sentence according to the
context window. The detailed description of the
model and its implementation is given in section
3.

We have used the data provided by the or-
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ganizers for the shared task on quality esti-
mation (2016) which includes: (i) source sen-
tence (ii) translated output (word/phrase level)
(iii) word/phrase level tagging (OK/BAD) (iv)
post edited translation (v) 22 baseline features
(vi) word alignment. The goal of the task is to
predict whether the given word/phrase is a cor-
rect/incorrect (OK/BAD) translation in the given
sentence.

The remainder of the paper is organised as fol-
lows. Section 2 describes the related work. Sec-
tion 3 presents RNN models we use, and its imple-
mentation. In section 4, we discuss the data dis-
tribution, our approaches, and results. Discussion
of our methodology and different models is cov-
ered in section 5 followed by concluding remarks
in section 6.

2 Related Work

For word level QE, supervised classification tech-
niques are being used widely. Most of these ap-
proaches require manually designed features (Bo-
jar et al., 2014), similar to the feature set provided
by the organizers.

Logacheva et al. (2015) modeled the word level
QE using the CRF++ tool with data selection and
data bootstrapping in which data selection filters
out the sentences having the smallest proportion of
erroneous tokens and are assumed to be less use-
ful for the task. The bootstrapping technique cre-
ates additional data instances and boosts the im-
portance of BAD labels occurring in the training
data. Shang et al. (2015) tried to solve the problem
of label imbalance with creating sub-labels like
OK B (begin), OK I (intermediate), OK E (end).
Shah et al. (2015) have used word embedding
as an additional feature (+25 features) with SVM
classifier. Bilingual Deep Neural Network (DNN)
based model for word level QE was proposed by
Kreutzer et al. (2015), in which word embedding
was pre-trained and fine-tuned with other param-
eters of the network using stochastic gradient de-
scent. de Souza et al. (2014) have used Bidirec-
tional LSTM as a classifier for word level QE.

The architecture of RNN-LM has been used for
Natural Language Understanding (NLU) (Yao et
al., 2013; Yao et al., 2014) earlier. Our approach
is quite similar to the Kreutzer et al. (2015), but
we are using RNN instead of DNN. We have also
tried to address the problem of label-imbalance,
introducing sub-labels as suggested by Shang et

al. (2015).

3 RNN Models for QE

For this task, we exploited RNN’s extensions,
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent
Unit (GRU) (Cho et al., 2014). LSTM and GRU
have shown to perform better at modeling the
long-range dependencies in the data than the sim-
ple RNN. Simple RNN also suffers from the prob-
lem of exploding and vanishing gradient (Bengio
et al., 1994). LSTM and GRU tackle this problem
by introducing a gating mechanism. LSTM in-
cludes input, output and forget gates with a mem-
ory cell, whereas GRU has reset and update gates
only (no memory cell). The detailed description of
each model is given in the following subsections.

3.1 LSTM

Different researchers use slightly different LSTM
variants (Graves, 2013; Yao et al., 2014; Jozefow-
icz et al., 2015). We implemented the version of
LSTM described by the following set of equations:

it = sigm(Wxixt +Whiht−1 + bi)

ot = sigm(Wxoxt +Whoht−1 + bo)

ft = sigm(Wxfxt +Whfht−1 + bf )

jt = tanh(Wxjxt +Whjht−1 + bj)

ct = ct−1 � ft + it � jt

ht = tanh(ct)� ot

where sigm is the logistic sigmoid function and
tanh is the hyperbolic tangent function to add
non linearity in the network. � is the element-
wise multiplication of vectors. i, o, f are input,
output, forget gates respectively, j is the new
memory content whereas c is the updated mem-
ory content. In these equations, W∗ are the weight
matrices and b∗ are the bias vectors.

3.2 Deep LSTM

In this paper, we have used deep LSTM with two
layers. Deep LSTM is created by stacking mul-
tiple LSTMs on the top of each other. We feed
the output of the lower LSTM as the input to the
upper LSTM. For example, if ht is the output of
the lower LSTM, we apply a matrix transform to
form the input xt for the upper LSTM. The ma-
trix transformation allows having two consecutive
LSTM layers of different sizes.
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3.3 GRU
GRU is an architecture, which is quite similar to
the LSTM. Chung et al. (2014) found that GRU
outperforms LSTM on a suit of tasks. GRU is de-
fined by the following set of equations:

rt = sigm(Wxrxt +Whrht−1 + br)

zt = sigm(Wxzxt +Whzht−1 + bz)

h̃t = tanh(Wxhxt +Whh(rt � ht−1) + bh)

ht = zt � ht−1 + (1− zt)� h̃t

In the above equations, W∗ are the weight matri-
ces and b∗ are the bias vectors. r and z are known
as the reset and update gate respectively. GRU
does not use any separate memory cell as used
in LSTM. However, gated mechanism controls the
flow of information in the unit.

3.4 Implementation Details
We implemented all the models (LSTM, deep
LSTM and GRU) with 1THEANO framework
(Bergstra et al., 2010; Bastien et al., 2012) as de-
scribed above. For all the models in the paper, the
size of a hidden layer is 100, the word embedding
dimensionality is 100 and the context word win-
dow size is 5.

We initialized all the square weight matrices as
random orthogonal matrices. All the bias vectors
were initialized to zero. Other weight matrices
were sampled from a Gaussian distribution with
mean 0 and variance 0.012.

To update the model parameters, we have
used Truncated Back-Propagation-Through-Time
(T-BPTT) (Werbos, 1990) with stochastic gradient
descent. We fixed the depth of BPTT to 7 for all
the models. We used Ada-delta (Zeiler, 2012) to
adapt the learning rate of each parameter automat-
ically (ε = 10−6 and ρ = 0.95). We trained each
model for 50 epochs.

4 Experiments and Results

In this section, we describe the experiments car-
ried out for the shared task and present the experi-
mental results.

4.1 Data distribution
We have used the corpus shared by the orga-
nizers for our experiments. The split for train-

1http://deeplearning.net/software/
theano/#download

ing/development/testing is detailed in table 1.
Test1 split was used for evaluating the differ-
ent experiments that we have carried out for the
shared task. Evaluation scores displayed in the re-
sults section are against Test1 only. Organizers
provided another set of test data (Test2), against
which all the submitted systems were evaluated.

#Sentences #Tokens
Train 11000 184697
Dev 1000 17777
Test1 1000 16543
Test2 2000 34477

Table 1: Corpus distribusion.

4.2 Methodology
In the following subsections, we discuss our ap-
proaches for word/phrase level quality estimation.

4.2.1 Word Level QE
Our experiments are mainly focused on the word
level QE. We have used the output of the word
level QE system for the estimation of the phrase
level quality.

As mentioned above, we have used the mod-
ified RNN-LM architecture for the experiments.
Baseline (LSTM) system was developed by train-
ing word embedding from scratch with other pa-
rameters of the model. In another set of experi-
ments, we have pre-trained the word embedding
with word2vec (Mikolov et al., 2013b), and fur-
ther tuned with the training of the model parame-
ters. For pretraining, we have used an additional
corpus (2M sentences approx.) from English-
German Europarl data (Koehn, 2005).

For bilingual models, we restructured the source
sentence (English) according to the target (Ger-
man) using word alignment provided by the or-
ganizers. For many-to-one mapping in the align-
ment (English-German), we chose the first align-
ment only. The ‘NULL’ token was assigned to the
words where were not aligned with any word on
the target side. The input of the model is con-
structed by concatenating context words of source
and target. For example, consider the source
word sequence s1s2s3, and the target word se-
quence t1t2t3, then the input to the network will
be s1s2s3t1t2t3.

In the training data, the distribution of the la-
bels (OK/BAD) is skewed (OK to BAD ratio is
approx. 4:1). To handle the issue, we tried one
of the strategies proposed by Shang et al. (2015),
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in which we replace ‘OK’ label with sub-labels to
balance the distribution. The sub-labels are OK B,
OK I, OK E, depending on the location of the to-
ken in the sentence.

4.2.2 Phrase Level QE
For phrase level QE, we have not trained any ex-
plicit system. As it was mentioned by the organiz-
ers that a phrase is tagged as ‘BAD’, if any word
in the phrase is an incorrect translation. So, We
have taken the output of the word level QE system
and tagged the phrase as ‘BAD’, if any word in
the phrase boundary is tagged ‘BAD’. And other
phrases (all words have the OK tag) are simply
tagged as ‘OK’.

Model/Test F1 BAD F1 OK
Baseline (LSTM) 35.60 82.93
LSTM PT 37.27 83.25
LSTM PT SL 36.27 81.38
LSTM BL 36.18 82.51
LSTM BL PT 38.53 83.80
LSTM BL PT SL 39.17 83.20
DeepLSTM 35.86 80.35
DeepLSTM PT 36.81 82.51
DeepLSTM PT SL 36.13 81.32
DeepLSTM BL 37.41 81.92
DeepLSTM BL PT 38.38 81.41
DeepLSTM BL PT SL 37.04 82.40
GRU 37.98 84.29
GRU PT 39.42 84.81
GRU PT SL 40.46 83.09
GRU BL 41.56 84.57
GRU BL PT 42.46 83.76
GRU BL PT SL 42.92 83.62

Table 2: F1 scores of different experiments for
Word level QE. (PT: Pretrain; BL: Bilingual; SL:
Sublabels)

4.3 Results

To develop a baseline system for word and phrase
level QE, organizers have used the baseline fea-
tures (22 features) to train a Conditional Ran-
dom Field (CRF) model with CRFSuite tool. The
results of the experiments against Test2 are dis-
played in table 4 and 5.

We have evaluated our systems using the F1-
score. As ‘OK’ class is dominant in the data and a
naive system tagging all the words ‘OK’ will score
high. Hence, F1-score of the ‘BAD’ class has been
used as a primary metric for the system evaluation.
We have used the separate set of test and develop-
ment corpus as shown in table 1. The evaluation
of all the experiments against Test1 corpus is dis-
played in table 2 for word level QE. Results for

Model/Test F1 BAD F1 OK
Baseline (LSTM) 43.46 75.41
LSTM PT 45.41 75.67
LSTM PT SL 44.92 73.11
LSTM BL 44.43 74.93
LSTM BL PT 45.75 77.17
LSTM BL PT SL 46.96 75.73
DeepLSTM 43.83 71.98
DeepLSTM PT 44.92 74.17
DeepLSTM PT SL 43.85 72.32
DeepLSTM BL 45.65 73.81
DeepLSTM BL PT 46.50 72.68
DeepLSTM BL PT SL 45.63 74.57
GRU 45.70 77.86
GRU PT 46.49 80.00
GRU PT SL 48.38 76.14
GRU BL 48.11 77.69
GRU BL PT 49.58 76.88
GRU BL PT SL 49.61 77.20

Table 3: F1 scores of different experiments for
Phrase level QE.

phrase level QE are shown in table 3.
From the result tables, it is evident that GRU

outperforms LSTM as reported by Chung et al.
(2014) for this task as well. Pre-training is help-
ful in all the models. Also, the introduction of
sub-labels is able to handle the problem of label-
imbalance up to some extent. The results of Bilin-
gual models are better than monolingual models,
as reported by Kreutzer et al. (2015).

4.4 Submission to the shared task

We have participated in the Task-2, which includes
word and phrase level quality estimation. The sub-
mitted system setting was: GRU + Pretrain +
Sublabels, which is marked in the result tables (2
and 3) as well. Table 4 and 5 detail the 2results of
the submission on Test2 corpus. The submission
results were provided by the organizers.

F1 BAD F1 OK
Baseline (CRF) 36.82 88.00
Submitted system 41.92 84.21

Table 4: Results, word level submission.

F1 BAD F1 OK
Baseline (CRF) 40.14 80.01
Submitted system 50.31 75.50

Table 5: Results, phrase level submission.

2http://www.quest.dcs.shef.ac.uk/
wmt16_files_qe/wmt16_task2_results.pdf
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5 Discussion

The approach is language independent and it uses
only context words’ vector for predicting the tag
for a word. In the other words, we check if
any word fits (grammatically) in the given slot
of words or not. We could use language spe-
cific features to enhance the classification accu-
racy, though. Experiments with bilingual models
are similar to the concept of adding more features
to any machine learning algorithm. In monolin-
gual models, we use only target (German) words’
vector as feature whereas, in bilingual models, we
use source (English) words’ vector also. A chal-
lenge which machine learning practitioners often
face is, how to deal with skewed classes in clas-
sification problems. The distribution of classes
(OK/BAD) is skewed in our case as well. To han-
dle the issue, we tried to balance the distribution
of classes by introducing the sub-labels.

LSTM and GRU are quite similar models, ex-
cept the gating mechanism. It is hard to say which
model will perform better in what conditions or in
general (Chung et al., 2014). In this paper and in
general as well, this restricts us to conduct only the
empirical comparison between the LSTM and the
GRU units. Deep models generally perform better
than the shallow models, which is opposite for this
task where LSTM outperforms Deep LSTM. The
reason could be the insufficient data for training
the deep models.

6 Conclusion and Future Work

We have developed a language independent
word/phrase level Quality Estimation system us-
ing RNN. We have used RNN-LM architecture,
with LSTM, deep LSTM, and GRU. We showed
that these models benefit from pretraining and
the introduction of sub-labels. Also, models
with bilingual features outperform the monolin-
gual models.

We can extend the work for sentence and docu-
ment level quality estimation. Improving the word
level quality estimation with data selection and
bootstrapping (Logacheva et al., 2015), more ef-
fective ways to handle label-imbalance, training
bigger models, using language specific feature,
other variations of LSTM architecture etc., are the
other possibilities.

References
Frederic Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed im-
provements. In NIPS 2012 deep learning workshop.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. In IEEE Transactions on
Neural Networks, pages 157–166.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. In Journal of Machine Learning Re-
seach, volume 3.

James Bergstra, Olivier Breuleux, Frederic Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a CPU and GPU
math expression compiler. In Proceedings of the
Python for scientific computing conference (SciPy),
volume 4.

John Blatz, Erin Fitzgerald, George Fostera, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence
Estimation for Machine Translation. In COLING
2014, pages 315–321. Geneva, Switzerland.

Ondrej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 workshop
on statistical machine translation. In WMT13, pages
1–44. Sofia, Bulgaria.

Ondrej Bojar, Christian Buck, Christian Federman,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Ales
Tamchyna. 2014. Findings of the 2014 workshop
on statistical machine translation. In WMT14, pages
12–58. Baltimore, MD.

Ondej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation. In
WMT15, pages 1–47. Lisbon, Portugal.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 workshop on statistical ma-
chine translation. In WMT12, pages 10–51. Mon-
treal, Canada.

Kyunghyun Cho, Bart Van Merrinboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings

823



of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. In arXiv:1412.3555 [cs.NE].

Jose GC de Souza, U. Politecnica de Valencia,
Christian Buck, Marco Turchi, and Matteo Ne-
gri. 2014. FBK-UPV-UEdin participation in
the WMT14 Quality Estimation shared-task. In
WMT14, pages 322–328.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. In arXiv:1308.0850 [cs.NE].

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. In Neural computation, pages
1735–1780.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of re-
current network architectures. In Proceedings of the
32nd International Conference on Machine Learn-
ing, pages 2342–2350.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Julia Kreutzer, Shigehiko Schamoni, and Stefan Rie-
zler. 2015. QUality Estimation from ScraTCH
(QUETCH): Deep Learning for Word-level Transla-
tion Quality Estimation. In WMT15, pages 316–322.
Lisboa, Portugal.

Varvara Logacheva, Chris Hokamp, and Lucia Specia.
2015. Data enhancement and selection strategies
for the word-level Quality Estimation. In WMT15,
pages 330–335. Lisboa, Portugal.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model. In
Proceedings of Interspeech, volume 2. Makuhari,
Chiba, Japan.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever.
2013a. Exploiting Similarities among Languages
for Machine Translation. In CoRR, pages 1–10.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scal-
able hierarchical distributed language model. In
Advances in neural information processing systems,
pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal Probabilistic Neural Network Language Model.
In Aistats, volume 5, pages 246–252.

Holger Schwenk and Jean-Luc Gauvain. 2002. Con-
nectionist language modeling for large vocabulary
continuous speech recognition. In ICASSP. IEEE,
volume 1, pages I–765.

Holger Schwenk. 2007. Continuous space language
models. In Computer Speech and Language, vol-
ume 21, pages 492–518.

Kashif Shah, Varvara Logacheva, G. Paetzold, Fred-
eric Blain, Daniel Beck, Fethi Bougares, and Lucia
Specia. 2015. SHEF-NN: Translation Quality Es-
timation with Neural Networks. In WMT15, pages
342–347. Lisboa, Portugal.

Liugang Shang, Dongfeng Cai, and Duo Ji. 2015.
Strategy-Based Technology for Estimating MT
Quality. In WMT15, pages 248–352. Lisboa, Por-
tugal.

Richard Socher, John Bauer, Christopher D. Manning,
, and Andrew Y. Ng. 2013a. Parsing With Composi-
tional Vector Grammars. In Proceedings of the ACL
2013, pages 455–465.

Richard Socher, Alex Perelygin, , and Jy Wu. 2013b.
Recursive deep models for semantic composition-
ality over a sentiment treebank. In Proceedings of
EMNLP, pages 1631–1642.

Lucia Specia, Marco Turchi, Nicola Cancedda, Marc
Dymetman, and Nello Cristianini. 2009. Estimating
the Sentence-Level Quality of Machine Translation
Systems. In EACL 2009, pages 28–37. Barcelona,
Spain.

Paul J. Werbos. 1990. Backpropagation through time:
what it does and how to do it. In IEEE, volume 78,
pages 550–1560.

Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang,
Yangyang Shi, and Dong Yu. 2013. Recurrent neu-
ral networks for language understanding. In INTER-
SPEECH, pages 2524–2528.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken lan-
guage understanding using long short-term memory
neural networks. In Spoken Language Technology
Workshop (SLT), IEEE, pages 189–194.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. In arXiv:1212.5701 [cs.LG].

824


