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Abstract. Current machine translation systems require human revision to produce high-quality
translations. This is achieved through a post-editing process or by means of an interactive hu-
man–computer collaboration. Most protocols belonging to the last scenario follow a left-to-right
strategy, where the prefix of the translation is iteratively increased by successive validations and
corrections made by the user. In this work, we propose a new interactive protocol which allows
the user to validate all correct word sequences in the translation generated by the system, breaking
the left-to-right barrier. We evaluated our proposal through simulated experiments, obtaining large
reductions of the human effort.
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1 Introduction

Machine Translation (MT) technology is still far from producing perfect translations
(Dale, 2016). Therefore, translation errors must be corrected by a human in a later
post-editing stage.

The Interactive-Predictive Machine Translation (IMT) field arose as an alternative to
classic post-editing systems, aiming to reduce human post-editing effort and increase
efficiency. This paradigm strives for combining the knowledge of a human translator and
the efficiency of an MT system. Notable contributions to IMT technology were carried
out around the TransType (Foster et al., 1997; Langlais and Lapalme, 2002), TransType2
(Barrachina et al., 2009; Casacuberta et al., 2009); and CasMaCat (Martı́nez-Gómez
et al., 2012; Alabau et al., 2013; González-Rubio et al., 2013; Sanchis-Trilles et al.,
2014) projects, among others (Koehn, 2009; Huang et al., 2012; Cai et al., 2013; Green
et al., 2014; Torregrosa et al., 2014; Azadi and Khadivi, 2015; Marie and Max, 2015).

Especially interesting is the so-called prefix-based IMT (Barrachina et al., 2009).
In this approach, the user corrected the first wrong word (from left-to-right) of the
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translation suggested by the system. Then, the system proposed an alternative hypothesis,
compatible with the user feedback. A cumbersome phenomenon noticed in this protocol
happened when the non-validated part of the sentence contained correct words. If such
words were modified by the system in following predictions, the user had to edit words
that were correct in previous iterations. Therefore, the effort made by the user was
increased and the system had an annoying behavior.

To overcome this weakness, we propose a new IMT approach which allows the
user to select, at each interaction, all correctly translated word segments. Hence, correct
parts of the current translation are kept in successive hypothesis produced during the
human–machine interaction, reducing the number of corrections required and avoiding
the aforementioned issue. This approach relies on the idea from González-Rubio et al.
(2016) of breaking down the prefix constraint.

The proposed protocol shares some similarities with Marie and Max (2015) in that
we select word segments from a translation hypothesis. However, on the one hand, our
protocol contains more types of user interactions such as word corrections and word
deletions (see Section 2); and, on the other hand, we have different goals in mind: Marie
and Max (2015) aim at increasing translation quality with the help of a human user, and
we aim at reducing the human effort of generating a translation in an IMT framework.

The rest of this paper is structured as follows: Section 2 describes our segment-based
IMT approach. After that, in Section 3, we report the experiments conducted in order
to assess our proposal and the results of those experiments. Finally, conclusions of the
work are drawn in Section 4.

2 Segment-Based Search

The goal of the IMT protocol developed in this work is to offer more freedom to
the human agent, empowering the selection of the correct segments of a translation
hypothesis. To achieve this, we allow the user to select, remove, or replace parts of a
translation suggestion. The system then reacts to this human feedback, producing a new
compatible hypothesis. Fig. 1 shows an example of an IMT session using the proposed
segment-based approach.

2.1 Statistical Framework

Barrachina et al. (2009) proposed an statistical framework for the prefix-based IMT
approach, where human and computer iteratively collaborated for translating a source
sentence x. In this framework, at the beginning of the process, the system proposes
a translation hypothesis y. Then, the user searches, from left-to-right, the first wrong
word in y and corrects it. With this action, the user defines a valid translation prefix
p̂. At the next iteration, the system generates a suffix s̃ that completes p̂ in order to
(hopefully) obtain a better translation of x : y′ = p̂s̃. This process is repeated until the
user accepts the complete suggestion of the system. At each iteration, s̃ is obtained as
the most probable of all possible suffixes s, given the prefix p̂ and the source sentence x:

s̃ = argmax
s

Pr(s | x, p̂) (1)
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source (x): Et la question n ’ a pas encore été évaluée chez les patients atteints de cancer gastrique

target translation (ŷ): And the issue has not been evaluated in gastric cancer patients

IT-0 T And the issue has not yet been investigated among patients with gastric cancer

IT-1
U And the issue has not been evaluated among patients with gastric cancer

T And the issue has not been evaluated not in gastric cancer patients with

IT-2
U And the issue has not been evaluated in gastric cancer patients #

T And the issue has not been evaluated in gastric cancer patients

END U And the issue has not been evaluated in gastric cancer patients

Fig. 1: Segment-based IMT session to translate a French sentence into English. At the initial
iteration (IT-0), the system suggests an initial translation. Then, at iteration 1, the user selects
those segments to keep (“And the issue has not”, “been” and “gastric cancer”); deletes a word
(“yet”); and substitutes “investigated” by “evaluated”, which is added to the segment. With this
information, the system suggests a new hypothesis. Similarly, at iteration 2, the user selects new
valid segments (“in” and “patients”), deletes words that are in the middle of two segments (“not”),
and inputs an end of sentence mark (illustrated as “#”). The session ends when the user accepts
the last translation suggested by the system.

This equation can be straightforwardly rewritten as:

s̃ = argmax
s

Pr(p̂, s | x) (2)

Therefore, at each iteration, the process consists of a regular search in the space of
the translations but constrained by the prefix p̂.

The protocol proposed in our work follows this iterative procedure but, at each
iteration, the user is free to validate all correct subsequences of words (segments) from
y. The user has also the possibility of deleting all words located between two segments
(merging both segments into one), and either correcting a wrong word (as in the prefix-
based approach) or inserting a new word between two segments.

Let f = f̂1, . . . , f̂N be a feedback signal, where f̂1, . . . , f̂N is the sequence of N
segments validated by the user in an interaction (including a one-word segment with
the new word). The goal is to generate a sequence h = h̃1, . . . , h̃N of new translation
segments (an h̃i for each pair of validated segments f̂i, f̂i+1; being 1 ≤ i < N ) to
obtain a (hopefully) better translation of x: y′ = f̂1, h̃1, . . . , f̂N , h̃N . In our statistical
framework, the best translation segments are obtained as:

h̃1, . . . , h̃N = argmax
h1,...,hN

Pr(h1, . . . ,hN | x, f̂1, . . . , f̂N ) (3)

which can be rewritten as:

h̃1, . . . , h̃N = argmax
h1,...,hN

Pr(f̂1,h1, . . . , f̂N ,hN | x) (4)

This last equation is very similar to the classical prefix-based IMT equation (Eq. (1)),
with the main difference being that the search process in Eq. (1) is limited to the space
of suffixes constrained by p̂, while the search in Eq. (4) is in the space of possible
substrings of the translations of x, constrained by the sequence of segments f̂1, . . . , f̂N .
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3 Experiments

3.1 Corpora

We tested our proposal in four tasks from different domains: the EMEA corpus1 (Tiede-
mann, 2009), formed by documents from the European Medical Agency; the EU cor-
pus (Barrachina et al., 2009), extracted from the Bulletin of the European Union; the
TED corpus2 (Federico et al., 2011), a collection of recordings of public speeches cover-
ing a variety of topics; and the Xerox corpus (Barrachina et al., 2009), extracted from
Xerox printer manuals. To the best of our knowledge, excluding EMEA, all corpora
have been used in previous IMT works (Tomás and Casacuberta, 2006; Barrachina et al.,
2009; González-Rubio et al., 2013). The partition sets used in this work are the same
than those used in the aforementioned works.

All datasets have been tokenized by means of the standard tool provided with the
Moses toolkit (Koehn et al., 2007)—exempting Chinese sentences, which were split
into words using the Standford word segmenter (Tseng et al., 2005). Sentences have
been kept truecased, except for the Zh–En language pair, since Chinese has no case
information. Table 1 shows the corpora main features.

Table 1: Corpora statistics. K denotes thousands and M millions. |S| stands for number of sentences,
|W| for number of words and |V| for size of the vocabulary.

EMEA EU TED Xerox
(Fr/En) (Es/En) (Zh/En) (Es/En)

Train
|S| 1.1M 214K 106.9K 55.6K
|W| 14.3M/17.0M 6M/5.4M 1.9M/2.1M 750K/665K
|V| 71K/80K 84K/70K 55K/41.7K 16.8K/14K

Dev.
|S| 500 400 934 1012
|W| 12K/10K 12K/10K 21.5K/20.1K 16K/14.4K
|V| 2.9K/2.7K 3K/2.7K 3.8K/3.2K 1.8K/1.6K

Test
|S| 1K 800 1.6K 1.1K
|W| 27K/21K 23K/20K 33.2K/31.9K 10.1K/8.4K
|V| 4.5K/4.5K 4.7K/4.2K 4.5K/3.7K 2K/1.9K

3.2 Metrics

The quality of our interactive protocol is assessed according to the following metrics:

Word Stroke Ratio (WSR) (Tomás and Casacuberta, 2006): Measures the number of
words edited by the user, normalized by the number of words in the final translation.
In this work, we assume that the edition of a word is considered to have a constant
cost (one word stroke) independently of its length.

1 http://www.statmt.org/wmt14/medical-task/
2 https://wit3.fbk.eu/mt.php?release=2012-03-test
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Mouse Action Ratio (MAR) (Barrachina et al., 2009): Measures the number of mouse
actions made by the user, normalized by the number of characters in the final
translation. In classic IMT, the user makes a mouse action each time she needs
to edit a word (to position the prompt), and one more per sentence to validate
the translation. In the protocol proposed in this work, in addition to those mouse
actions, the user makes two actions each time she validates a segment (clicking at
the beginning and at the end of the segment), and two more each time she deletes
some words located between segments3 (same procedure as selecting segments but
using the right button of the mouse).

Conceptually, WSR accounts for the physical effort of typing corrections, while
MAR accounts for the cognitive effort of the supervision process (Macklovitch et al.,
2005).

Additionally, to evaluate the quality of the initial translations, we have used the
following well-known metric:

BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002): computes the
geometric average of the modified n-gram precision, multiplied by a factor that
penalizes short sentences.

3.3 Implementation

Our implementation of the segment-based IMT protocol is based on the Moses toolkit
(Koehn et al., 2007). We profit from the feature that allows to bring external knowledge
to the decoder by means of an XML Markup language (see Fig. 2 for an example),
for validating the translation of parts of a sentence without changing the models. The
decoder has an XML markup scheme that allows us to plug in the translation of parts
of a sentence without changing the models. More precisely, we use the exclusive mode,
which only takes into account the given translation for a part of a sentence—ignoring any
phrases from the phrase table that overlaps with that span. With this, we can constrain
the search process to follow Eq. (4).

<x translation = “And the issue has not been evaluated”> Et la question n ’ a pas encore été
évaluée </x><wall/> chez les patients atteints de <x translation = “gastric cancer”> cancer

gastrique </x><wall/>

Fig. 2: Example of a sentence in XML markup language (corresponding to the sentence of the first
iteration of Fig. 1), specifying the desired translation for some parts of the sentence: Et la question
n ’ a pas encore été évaluée must be translated as And the issue has not been evaluated, and cancer
gastrique must be translated as gastric cancer. The tag <wall/> indicates to the decoder that
those segments should not be reordered.

We implemented a prototype that manages the interaction between a human agent
and the MT system. This is an iterative process in which the prototype, by means of the

3 One mouse action is enough for selecting or deleting a one-word segment (in which case, the
user would simply click on the word).
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XML markup language, takes into account the feedback provided by the user, obtains
a translation with Moses, and suggests the new hypothesis. All this takes place at the
end of each iteration, with an average response time of 90 ms4 per iteration. According
to Nielsen (1993), this time is below “the limit for having the user feel that the system is
reacting instantaneously”.

At each one of these iterations, the user has three different ways of interacting with
the system (see Section 2). Such interactions affect differently in the generation of the
new XML markup sentence:

Segment selection: for each segment selected by the user, we align the words of that
segment with their correspondent source words (phrase alignments), and generate
an XML tag to plug in that segment (the desired translation) to those source words.

Word deletion: in the same fashion as with segments, for each word to delete, we
align that word with its correspondent source words and generate a new XML tag,
indicating that we want to obtain an empty translation.

Word correction: each time the user corrects a word or inserts a new one, we align the
new word with its correspondent source words using a hidden markov alignment
model (Vogel et al., 1996).

All the MT systems used in this work were trained with the standard configuration
of Moses, with the weights of the log-linear model being optimized by means of the
Minimum Error Rate Training (MERT) procedure (Och, 2003). Lastly, a 5-gram word-
based language model was estimated on the target side of the parallel corpora, using the
improved KneserNey smoothing (Chen and Goodman, 1996), by means of the SRILM
toolkit (Stolcke, 2002).

For the implementation of the classic prefix-based IMT systems, we made the word
graph exploration and the best suffix generation for a given prefix following the procedure
described by Barrachina et al. (2009): We generated a word graph for each sentence
to translate. After that, treating the word graph as a weighted finite-state automaton,
we parsed the prefix over it, from the initial state to any other intermediate state, to
find the best path that accounts for the prefix. Finally, we obtained the corresponding
translation for the best path from the intermediate state to the finale state. Therefore,
our implementation of prefix-based IMT is consistent with Barrachina et al. (2009),
considering that we generate word graphs with the current SMT state-of-the-art Moses
toolkit.

3.4 Evaluation on a Simulated Environment

Since the evaluation with human agents is too slow and expensive to be applied frequently
during system development, we carried out an automatic evaluation with simulated users.
For this evaluation, we considered the references in the corpora as the translations the
user desires. Furthermore, without loss of generality and for the sake of simplicity, we
assumed that the user always corrected the left-most wrong word.

At each iteration of the IMT session, we selected those segments that were common
with the reference. After that, following a left-to-right order, we compared each word of

4 Tested on a machine with an Intel i5 CPU at 3.1 GHz.
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the current translation with those of the reference. When we found a different word in
translation and reference, if that reference word was the first one of the next selected
segment, we deleted all the words between those two segments; otherwise, we input that
word (merging all previous segments into one). Once translation and reference were the
same, we moved on to the next sentence.

3.5 Results

Table 2 shows the user-effort results of our segment-based protocol against the prefix-
based approach. Prefix-based results were obtained following the work of Barrachina
et al. (2009) and are similar to those reported on the literature (Tomás and Casacuberta,
2006; Barrachina et al., 2009; González-Rubio et al., 2013). The quality of the initial
translation is also displayed as an indicative of the difficulty of each task. Our proposal
clearly improves prefix-based IMT in terms of user physical effort of typing corrections.
The WSR is always reduced, yielding diminishes up to 29 points.

Table 2: Results of our segment-based IMT proposal, in comparison with the prefix-based approach.
The quality of the initial translation is shown as an indicative of the difficulty of each task. All
values are reported as percentages.

Corpus Language BLEU Prefix-Based Segment-Based
WSR MAR WSR MAR

EMEA
Fr–En 31.3 57.8 12.4 34.4 18.8
En–Fr 30.2 58.4 12.5 40.4 16.3

EU
Es–En 48.2 45.6 10.2 28.3 15.0
En–Es 48.7 44.6 9.7 29.8 13.5

TED
Zh–En 11.7 83.1 22.4 54.1 28.3
En–Zh 8.7 86.3 55.7 59.2 72.4

Xerox
Es–En 54.5 35.8 10.5 23.2 16.9
En–Es 62.2 28.3 7.9 22.1 12.5

This reduction of typing effort comes with an increase in the number of mouse actions
(from 4 up to 6.5 points of MAR), which is always smaller than the effort reduction.
An exception to this comes with the En–Zh language pair since, due to Chinese nature,
words have fewer number of characters, which penalizes MAR metric. This penalization
results in a greater increase in MAR, although this increase is still smaller than the
effort reduction. Moreover, as mentioned before, WSR and MAR account for different
phenomena and thus have different cost from a human point of view (Macklovitch et al.,
2005). Therefore, the physical effort is substantially decreased, while the cognitive one
is slightly increased. Nonetheless, we need to test these considerations with real human
users before reaching to categorical conclusions.
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4 Conclusions

In this work, we have proposed a new IMT approach that overcomes the classic prefix-
based IMT limitation of only correcting the prefix. Our proposal allows the user to select
all correct word segments each time the system proposes a new translation. The system
leverages this additional knowledge for offering more enlightened hypothesis. Hence,
the human typing effort should be reduced.

We tested the proposal in a simulated environment, which confirmed that our ap-
proach effectively reduces the physical effort required, at the expense of a slight increase
in the cognitive effort. As future work, we should test the improvements of our proposal
with real users in order to obtain actual measures of the effort reduction.
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