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Abstract 

Effective knowledge resources are critical for developing successful clinical decision support 

systems that alleviate the cognitive load on physicians in patient care. In this paper, we describe 

two new methods for building a knowledge resource of disease to medication associations. These 

methods use fundamentally different content and are based on advanced natural language pro-

cessing and machine learning techniques. One method uses distributional semantics on large 

medical text, and the other uses data mining on a large number of patient records. The methods 

are evaluated using 25,379 unique disease-medication pairs extracted from 100 de-identified 

longitudinal patient records of a large multi-provider hospital system. We measured recall (R), 

precision (P), and F scores for positive and negative association prediction, along with coverage 

and accuracy. While individual methods performed well, a combined stacked classifier achieved 

the best performance, indicating the limitations and unique value of each resource and method. 

In predicting positive associations, the stacked combination significantly outperformed the base-

line (a distant semi-supervised method on large medical text), achieving F scores of 0.75 versus 

0.55 on the pairs seen in the patient records, and F scores of 0.69 and 0.35 on unique pairs. 

1 Introduction 

Electronic Health Record (EHR) systems have become invaluable repositories of patient information, 

but their poor design and inadequate functionality make it difficult for physicians to assimilate the vast 

amounts of data, reducing physician productivity and negatively impacting patient care [1] [2]. Ad-

vanced clinical decision support applications can reduce the cognitive load on physicians and improve 

patient care. These applications need medical knowledge for effective reasoning. One such knowledge 

is relationships (or more abstractly, associations) between diseases and medications. While Unified 

Medical Language System (UMLS) [3] semantic network contains manually curated entity relation-

ships, it falls short in a few ways: its coverage is inadequate, the relations are binary, and it is not always 

clear how far to traverse in the network. An automated association scoring method that provides high 

coverage and accuracy is highly desirable and can be used to build a useful knowledge resource. 

There are many uses for such a method and knowledge resource in clinical applications because these 

associations are not explicitly maintained in a typical patient record. The method (or the resource) can 

be used in a patient record summary to show clinicians which medications are related to a patient’s 

active medical conditions. It can also be used in developing cohort models and for predicting disease 

likelihood and progression using probabilistic graphical models. In this paper, we present two new meth-

ods for scoring associations between diseases and medications, and assess their accuracy and coverage.  

One of the methods is based on mining ordered medications data in millions of patient records and 

leveraging the temporality of events, such as disease diagnosis and medication ordering. The data min-

ing produces statistical measures for disease and medication pairs, which are then used as features in a 

supervised machine learning algorithm for association scoring between a disease and a medication. A 

learned F1-optimized threshold is then used to classify positive and negative associations. 

The second method is based on features obtained with distributional semantics on a large medical 

text, complemented with features from UMLS. Distributional semantics is used to obtain synonyms, 
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relations between words, and to develop a taxonomy of the concepts in the domain. From UMLS, se-

mantic types and relations of the entities are retrieved as features. Once again, a supervised machine 

learning model provides a score for the association, and a threshold is also learned to classify positive 

and negative associations. 

Two aspects of relations need to be considered – type and context. Given two entities, the type of 

relationship between them can be specific (such as “treats”, “prevents”, or “causes”) or it can be anon-

ymous. Further, a relationship between two given entities can be contextual in that a specific passage 

may entail a specific relationship between the entities, but this may or may not hold true in a larger 

corpus. This paper concerns itself with anonymous and context independent relationships, which we call 

associations. 

We conducted accuracy and coverage analysis using entity pairs from 100 de-identified patient rec-

ords provided to us by a large multidisciplinary hospital system. The diseases and medications of each 

patient were paired and these pairs formed the data set for this study. Medical experts manually labeled 

each unique pair in the data set. We conducted 10 x 10 cross validations, calculated standard precision, 

recall, F1 scores, and coverage measures, and plotted P-R curves. 

Results showed that the distributional semantics method provided higher recall, the data mining ap-

proach provided higher precision and the stacked ensemble of the two methods achieved the overall best 

performance. Both methods outperformed a previously reported baseline method that uses manifold 

models and distance learning on a large medical corpus.  

2 Related Work 

In general, entity associations can be found in human readable form in many sources. Medical textbooks, 

journal papers, and web content include discourse that states or implies associations. Formal documents, 

such as the FDA drug labels, are more organized textual resources. Patient records themselves are an-

other valuable source. In addition, UMLS contains relationships such as “treats” and “diagnostic-of”. 

There is a need for automated method(s) to leverage these sources. 

Many automated methods exist for relation extraction from passages in general text; a recent review 

[4] summarizes the research. The 2010 i2b2/VA challenge [5] included extraction of a specific set of 

relations from clinical notes. However, more work is needed to create a knowledge method or resource 

for clinical applications. One recent study [6], which we use as the baseline, successfully used manifold 

models and distance learning to extract seven frequent relations (defined in UMLS) from medical text 

with the intention of creating a knowledge resource, however, its coverage was limited. 

Another relevant system and method is MEDI [7], which builds an indication to prescribable medi-

cations association resource using four public resources - RxNorm, Side Effect Resource (SIDER) 2, 

MedlinePlus, and Wikipedia. The resources are treated as separate voting entities in this approach, which 

led to the conclusion that either the highest accuracy can be achieved with limited coverage (when all 

resources contain the entities) or that moderate accuracy can be achieved with a higher coverage (when 

only fewer resources contain the entities). In contrast, the methods described here automatically “learn” 

optimal use of the underlying resources. 

In [8] [9], association rule mining from EHR records was used to extract medication to disease rela-

tionships. The fundamental strategy in these studies was to use co-occurrence of medication orders and 

patient problems as a source to automatically build association rules between medications and problems. 

In one of the two methods studied here, such a co-occurrence of medications and problems in a patient 

record is extracted as one of several mined statistics. A systematic review of existing medication to 

indication (i.e. a symptom or a diagnosis) knowledge bases and their appraisal was presented in [10]. 

While an abstract appraisal is useful, here, we attempt a quantitative accuracy analysis with clinical 

decision support applications in mind.  

3 Methods and Experiments 

3.1 Distributional Relation Extraction (DRE) Method 

Distributional Relation Extraction (DRE) is a supervised machine learning method for discovering as-

sociations between given entity pairs using distributional semantics and UMLS. Some of its features are 

derived from distributional semantics applied to a large medical corpus, and the remaining features are 
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derived from UMLS. Let us assume that DRE is attempting to determine the strength of the association 

between two arguments, disease Hyperlipidemia and medication Simvastatin.  Figure 1 shows the fea-

tures generated for the two arguments. Note that the feature space is sparse and high dimensional. The 

feature space is described below: 

UMLS Type Features. The intuition is that the types of the arguments (in a taxonomy) are important 

constraints for association scoring, as most of the relations hold between the entities of specific types. 

For example, given the relation may_treat between two arguments, it is expected that the type of the 

first argument is a Medication, Chemical, Drug, etc. and the type of the second argument is a Disease, 

Syndrome, or Disorder. UMLS taxonomies are used to obtain one set of argument type features (the 

second set is described below). Since types in UMLS have multiple levels of granularity, DRE uses 

multi-granular features: semantic groups for coarse granularity, semantic types for medium granularity 

and MeSH (Medical Subject Heading) types for fine granularity. The type features are binary valued 

and so they have a value of 1 when present. In Figure 1, notice that for the first argument, Simvastatin, 

T1-C0003277 (with label Cholesterol Inhibitors) is the MSH type, ST1-T121 (with label Pharmacolog-

ical Substance) is the semantic type and SG1-CHEM (with label Chemicals and Drugs) is the semantic 

group. We experimented using combinations of UMLS types for the arguments, but did not see signifi-

cant performance improvement. 

Distributional Semantics (DS) Type Features. DRE features also include types induced by distribu-

tional semantics using the text corpora for the arguments, and the distributional semantics tool used here 

is called JoBimText [11], which is an open source project. The JoBimText tool provides a framework 

for creating a distributional semantics resource from large corpora, from which we obtain relations be-

tween words, similar terms or pseudo-synonyms for a word, and a taxonomy for the domain. We built 

the JoBimText resource as described in [12] by preprocessing the text corpora available for our project.  

JoBimText uses a dependency parser adapted for the medical domain [13] for identifying syntactic re-

lations, and the baseline relation extraction system mentioned earlier [6]. The JoBimText framework 

provides an API to access the resource built in this way. Unlike the UMLS types, there is only a single 

level of granularity for the DS types. But, each term may have multiple types. The DS type features are 

determined for both arguments, as shown in Figure 1. For Simvastatin, the DS type features are T1-

Medication, T1-Treatment and T1-Inhibitor. 

Relation Features. The existence of any relations between the two arguments is likely a trigger for 

other relations. For example, knowing that a drug prevents a disease is an indication for a “treats” rela-

tion as well. As mentioned above, the JoBimText tool can be used to identify relations that exist between 

the arguments in the corpus. However, a specific pair of arguments may not be mentioned together in 

the corpus (as processed by JoBimText) often enough, but pairs of similar terms may be present. When 

such expanded term pairs are considered, the relation features may provide a stronger signal. Therefore, 

in DRE, each relation argument is first expanded to its similar terms. As shown in Figure 2, Simvastatin 

is expanded to seven other medications including Atorvastatin and Statin, and Hyperlipidemia is ex-

panded to seven other diseases including Dyslipidemia and Hypercholesterolemia. The similar term ex-

pansion is done by using the JoBimText tool. The number of expanded terms are limited to the top 10 

relevant terms, based on empirical observation of optimal precision-recall trade-off in our study. Among 

the expanded term pairs, DRE finds three may_treat relations, two may_prevent relations, and one 

 
Figure 1. DRE features for Hyperlipidemia and Simvastatin. 

 
Figure 2. Example of similar terms & relations as used in DRE 
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nnMod_modnoun relation (a syntactic relation obtained by analyzing the parse tree) using JoBimText 

as shown in Figure 2. The counts for these three relations become feature values for the relation features 

as shown in Figure 1. 

Topic Similarity Features. The topic similarity between arguments can be a useful feature to detect 

semantic relations between them [14]. Topic similarity does not explain why things are related but does 

provide an indication of the presence of some relation between them. For example, Cholesterol and 

Diabetes are related, but their topic similarity is the same regardless of whether the relation is Diagnose 

or Treat. We scored the topic similarity between the two arguments using Latent Semantic Analysis 

(LSA) [15] [16]. The value of the LSA feature is equal to the LSA similarity between the two arguments. 

For the Simvastatin-Hyperlipidemia example, the value of the LSA similarity is 0.4. 

3.2 Association Data (AD) method 

The second association scoring method is based on the intuition that the historical, actual patient care 

data for a medical problem indicates clinically relevant associations between patients’ problems and 

medications/drug-classes. This method uses a set of statistical measures obtained by mining structured 

and coded data in approximately six million, longitudinal patient records as features in a supervised 

machine learning model. The features are described below. 

(In the equations below, the following notations are used: 

��/ �� = patient records with/without an order for X and diagnosis of disease D, 

��	/	��	=	patient records with/without an order for X and diagnosis of a disease other than D, 

subscript A_D means after diagnosis D, subscript B_D means before diagnosis D, 

and the time window for “at”, “before”, and “after” are specified in the feature definitions.) 

Frequency at diagnosis. The fraction of patients who received an order for the given medication or its 

drug class among the patients who have been diagnosed with a given disease. The time window for the 

order is three months before or two days after. 

���	
��(�,�) = 	
��

�� + ��

 

Relative Frequency at diagnosis. The fraction of patients who received an order for the medication or 

its drug class among the patients who have been diagnosed with a given disease relative to the other 

diseases. The time window is the same as above. 

������	
��(�,�) = 	
��

��

 

After versus Before diagnosis. The ratio of the number of times the medication or its drug class was 

ordered before the diagnosis of a given disease to the number of times the treatment or test was ordered 

after the diagnosis. If the after count is zero, then the ratio is set to the maximum value observed. The 

time window is three months for “after” and three months for “before”. 


�������������(�, �) = 	
�
_�

��_�

 

Odds Ratio at diagnosis. The odds ratio of receiving the medication or its drug class at diagnosis rel-

ative to the diagnosis of the given disease. The time window for “at” diagnosis is 30 days before and 

two days after.	

������
��(�,�) = 	
�� ��⁄

�� ��
⁄

 

Odds Ratio Before diagnosis. The odds ratio of receiving the given medication or its drug class rela-

tive to before/at the diagnosis of the given disease. The time window is three months for “before” di-

agnosis and 30 days before and two days after for “at” diagnosis. 	

�������������(�,�) = 	
��_� ��_�⁄

�� ��⁄
 

Odds Ratio After versus Before diagnosis. The odds ratio of receiving the given medication or its 

drug class relative to before/after diagnosis of the given disease. The time window is three months before 

for the “before” diagnosis and three months after for the “after” diagnosis. 

������
������������� =	
�
_� �
_�⁄

��_� ��_�⁄
 

128



Number of Patients Ordered. Total number of patients who received an order for the medication or its 

drug class within three months before to three months after the first diagnosis of the disease. 

�(�,�) = 	�� 

Pearson Product-Moment Correlation. This feature is the Pearson correlation value between the given 

disease (D) diagnosis and ordering the given medication or drug class (X) at the time of diagnosis. The 

Pearson product-moment correlation is calculated using the standard formula, using diagnoses data set 

{� !, " = 1. .%, where �  is 1 if D is diagnosed in the patient record "	and 0 otherwise, and for each orders 

data set {& }, " = 1. .% where &  is 1 if X is ordered in the corresponding patient record "	and 0 otherwise. 

The number of patient records in the data set is % for both data sets. 

Jaccard Index. This feature is the Jaccard index calculated between the diagnoses set and the medica-

tions set for a given disease (D) and medication (X). 

'())(��*+��(�, �) = 	
,�-! ∩ ,-!

,�-! ∪ ,-!
= 	

��

(�� + �� 	+ ��)
 

Arguments Expansion and Feature Aggregation 

Since the arguments to relation scoring are words and phrases (terms), it is necessary to map them to a 

standardized form so that the arguments can be matched with the data in the patient records. Therefore, 

all terms are first linked to one or more UMLS concept unique identifiers (CUIs) and then diseases are 

mapped to ICD9 codes and medications to RxNORM. In most cases, these mappings are one to many. 

So, for a given pair of disease and medication terms, (0, 1), the method first generates standardized 

pairs {(0 , 12), " = 1. . 3, 4 = 1. .%}, and then the above defined statistical measures for each pair of 

standardized entities. The next step is to aggregate these n x m feature vectors into a single vector for 

the (0, 1) using the decaying sum (where �5678(9: …	9<) = ∑
>?

@?

<
 A:  ) which produces a single vector, {7B, 

..., 7C}. This process is shown in Figure 3.  

3.3 Ensemble Method 

A stacked ensemble of DRE 

and AD methods, designated 

as DRE+AD, was created. 

Individual scores are used as 

features, and a supervised 

machine learning model 

learned the optimal way to 

combine these scores and 

hence the methods and their 

sources. This approach is 

known as stacking. We used 

stacking (rather than com-

bining features from both 

sources in a single model) 

for two reasons: (1) DRE and AD are fundamentally two different approaches and we wanted to study 

them separately and in combination; (2) DRE and AD achieved optimum performance with different 

machine learning methods – AD performed well with Random Forest because it uses a small number of 

features whereas DRE uses a high dimensional feature set which makes Logistic Regression a more 

suitable and effective approach.  

3.4 Models and Training 

For AD, a random forest [17] model was built since it provided the best accuracy. For DRE, DRE+AD, 

and for threshold learning, logistic regression models were accurate and were built with the LIBLINEAR 

package [18]. The training data set contained positive and negative examples of entity pairs labeled as 

associated (positive) or not associated (negative). As discussed below, positive and negative associations 

were imbalanced in the ground truth. We randomly sampled the larger set to create balanced training 

data. 

 
Figure 3. Argument expansion and feature merging in AD; In Feature Extractor, for 

each expanded pair, the set of features described in Section 3.2 are retrieved from the 

association data which was previously mined from patient records; In Feature Mer-

ger, the feature values of all expanded pairs are aggregated using the decaying sum 

(see the text) method to create a single feature vector for the given arguments.  
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3.5 Data Preparation 

For this assessment, approximately 122,374 disease-medication pairs, were extracted automatically 

from 100 de-identified, actual patient records that were obtained under an IRB approval from a large, 

multi-specialty hospital. Data characteristics are summarized in Table 1. The diseases for each patient 

record are obtained using an automated problem list generation [19] [20] but can be replaced by the 

diagnostic codes or other means. The medications are taken from the medication orders in each patient 

record and are represented as text strings and RxNORM codes (as entered in the medication order). 

Therefore, if a patient record has D diseases in the problem list and M medications in the medication 

orders then the patient record yields 

0	&	1 disease-medication pairs. 

 Two characteristics of this data are 

worth noting: (1) It contains duplicate 

pairs; (2) Negative examples (entities that 

don’t have an association) are signifi-

cantly larger than the positive examples. 

However, the data set is representative of 

the association scoring system input in re-

alistic clinical applications. To remedy the duplication and asymmetry, we present results first without 

duplicates and later show the impact of the occurrence frequency on accuracy. Furthermore, we sepa-

rately report accuracy for positively associated pairs and negatively associated pairs in the gold standard. 

3.6 Gold Standard Development 

The gold standard required for this study was developed by senior year medical students, who were 

presented with the pairs of unique entities from the data set and were asked to indicate whether a pair 

has an association or not. A physician (an MD) gave guidelines and examples to the students for the 

manual assessment. The students were instructed to identify any direct relationship between a pair. For 

example, the instructions allowed relationships such as a medication may treat or prevent a disease, or 

may cause a disease as a side effect. From the initial trials, it became obvious that the association is 

mostly independent of a patient and therefore any duplicate pairs in the aggregated data were eliminated 

and the students were asked to assess the relationship independent of the patient record from which the 

pair was drawn. Each association was assessed by two students and any conflicts were resolved by the 

MD. The gold standard was later vetted once the automated methods were run on this data, and correc-

tions, if any, were made to the gold standard. The final gold standard contained 25,379 unique disease-

medication pairs, including 1,642 positive instances and 23,737 negative instances.  

3.7 Experiments, Accuracy Metrics, and Analysis 

We used a 10 x 10 cross validation to conduct accuracy analysis. The model was always trained using 

an equal number of positive and negative pairs, but the model is tested on the imbalanced set. The results 

are reported for the aggregate of all 10-fold cross validation iterations. 

In the experiments, we tested the performance of four methods: the baseline method described earlier, 

DRE, AD, and a stacked ensemble of DRE and AD. Each experiment involved obtaining the association 

scores for each of the four methods for the entity pairs in the test set, using a threshold to determine if 

the association is positive or negative as per the method.  Association scores range from 0 to 1, and a 

scored association is positive if the predicted score is greater than or equal to the threshold, and negative 

otherwise. Using the gold standard, we then computed true positives, false positives, false negatives, 

and true negatives, from which we computed standard precision (P), recall (R), and F score (F1) for 

positive and negative associations. Note that if a method has no coverage for an entity pair, then a zero 

score is returned by the method and hence results in a negative association.  

F1 scores for positive associations were determined and plotted at threshold values from 0.1 to 0.9, 

in intervals of 0.1. We also plotted the precision-recall curves and compared areas under the curves. The 

threshold values that optimize F1 for each method were obtained and used in the final performance 

comparison of the methods.  

As one may recall from Section 3.5, the data contains multiple instances of some problem-medication 

pairs since the entity pairs are extracted from 100 patient records. For example, several patients may 

Table 1. Description of the data used in this study. 
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have been diagnosed with Diabetes and many of them may be prescribed Metformin as a treatment, in 

which case, the entity pair Diabetes-Metformin may occur several times in the data. Using the frequency 

of such occurrences in the original data as a weighting function, we determined weighted accuracy of 

the methods. 

4 Results and Discussion 

4.1 Coverage 

Table 2 shows the coverage for the baseline and AD methods. Coverage is the percentage of the entity 

pairs in the data for which the underlying methods and sources entail a positive or negative association. 

DRE, as it uses UMLS CUIs and types as some of its features, always returns non-empty values for the 

features. On the other hand, AD and the baseline method end up with all empty features, for at least 

some entity pairs. For example, if a medication is never prescribed for a disease, the patient records 

would never have any data for it. 

For the positive associations, AD has a very high cov-

erage (88%), but the baseline method has only 43% cov-

erage. This reflects in the baseline method’s poor accu-

racy in predicting positive associations. For the negative 

associations, both have poor coverage but it does not 

matter as much since the default score of 0.0 would end 

up being a correct prediction for negative associations. 

4.2 Accuracy, Thresholds, and P-R Curves 

First, consider the positive association at the optimum threshold values, as shown in Table 3. For the 

unique (i.e. unweighted) pairs, DRE performed slightly better than AD with an F1 score of 0.60 com-

pared to an F1 score of 

0.56 for AD. Both meth-

ods performed signifi-

cantly better than the 

baseline, which achieved 

an F1 score of only 0.35. 

The stacked method of 

DRE and AD performed 

better than the individual 

methods, achieving an F1 score of 0.69. Among the individual methods, AD had higher precision (0.62) 

and DRE had higher recall (0.66).  

When weighted entity pairs are considered, which represent the frequency of occurrence of the entity 

pairs in the patient records we used for this study, the performance pattern of the methods generally 

remained unchanged. DRE and AD performed significantly better than the baseline; each achieving an 

F1 score of 0.67. The stacked ensemble achieved the highest F1 score of 0.75. All methods achieved 

higher precision than recall. We handled the imbalanced nature of the dataset by learning a threshold 

value that optimizes the F1 score for positive associations, which is considered one of the effective ways 

to deal with imbalanced datasets [21]. The optimum thresholds are shown in Table 3 for the various 

methods, and Figure 4 shows how the F1 score varies with the threshold for the methods.  

An ablation study of feature groups 

for the unique (i.e. unweighted) positive 

pairs is shown in Table 4. We removed 

(ablated) a selected group of logically re-

lated features and determined the accu-

racy which would show the importance 

of the feature group to the model. For 

AD, using either drug-class or individual 

drugs alone in calculating feature scores 

achieved the same accuracy, but when 

used together they improved the overall 

Table 2. Coverage for the baseline and AD methods 

 

Table 3. Accuracy analysis of the methods in predicting the positive associations 

 

Table 4. An ablation study of accuracy for unique (unweighted) positive pairs 
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accuracy. For DRE, the distributional semantics (DS) features with argument expansion achieved accu-

racy close to the best DRE accuracy, and argument expansion by itself contributed significantly to the 

accuracy of the DS features. However, the UMLS features alone achieved the lowest F1 score, although 

they were useful in improving recall.  

In predicting negative associations, all methods achieved very high performance for both unweighted 

and weighted cases. This result merely reflects the fact that all methods return 0.0 when the underlying 

sources provide no information for the arguments, which happens to correctly predict a negative asso-

ciation. It is good to see that the default in these cases does no harm because a knowledge resource or 

method needs to handle all scenarios well in clinical applications. 

 Precision-recall curves for the methods are shown in Figure 5. As precision improves, recall reduces, 

at different rates for the different algorithms, which reflects in the area under the curve (AUC) metrics. 

The ability of the ensemble method to improve precision while not losing recall as rapidly is helped by 

AD and resulted in the overall high F1 score.  

4.3 Discussion 

While each of the two methods we evaluated achieved a reasonable level of accuracy, the ensemble 

method achieved the best performance. The two sources and methods complement each other, forming 

a more effective method for association scoring. DRE relies on carefully written medical text and man-

ually curated knowledge resources, while AD relies on statistical measures of patient care data. The 

intrinsic nature of the resources used by the methods reflects in the performance of the methods on 

certain types of entities. For example, DRE is better at coverage on rare diseases, such as scoring the 

pair hypophosphatemic rickets and calcitriol, and for over the counter (OTC) medications. AD performs 

better than DRE when not all medications within a class are equally used to treat a problem. For example, 

for the pair migraine and headache syndromes and Inderal la, DRE scored 0.007 whereas AD scored 

0.773, which is a true positive.  

5 Conclusion 

To reduce the cognitive load on physicians in using large amounts of data in the modern EHR systems, 

it is necessary to imbue clinical applications with fundamental medical knowledge, such as the relation-

ships between diseases and medications. This paper presented two new methods that used different ways 

of extracting features (distributional semantics and data mining) and two different content sources (large 

medical context and patient records) for the task. We compared the accuracy of these distinctly different 

approaches and their ensemble with a baseline method published previously. The results showed that an 

ensemble provides an accurate relation scoring system because of individual methods leveraging differ-

ent content sources and feature extraction. It can be used as an on-demand scoring system, or as a method 

to generate association scores for a large set of entities a priori for later use in clinical decision support 

applications. The methods introduced here are promising, and can be expanded in the future to score 

specific relations such as “treats” and “prevents”, and to score relations between other types of clinical 

data.  

Figure 4. Threshold vs. F1 scores 

 
Figure 5. Precision-Recall Curves 
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