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Abstract

Assigning a standard ICD-9-CM code to
disease symptoms in medical texts is an
important task in the medical domain. Au-
tomating this process could greatly reduce
the costs. However, the effectiveness of an
automatic ICD-9-CM code classifier faces
a serious problem, which can be triggered
by unbalanced training data. Frequent dis-
eases often have more training data, which
helps its classification to perform better
than that of an infrequent disease. How-
ever, a diseases frequency does not nec-
essarily reflect its importance. To resolve
this training data shortage problem, we
propose to strategically draw data from
PubMed to enrich the training data when
there is such need. We validate our method
on the CMC dataset, and the evaluation re-
sults indicate that our method can signifi-
cantly improve the code assignment classi-
fiers’ performance at the macro-averaging
level.

1 Introduction and Background

The rapid computerization of medical content
such as electronic medical records (EMRs), doc-
tors notes and death certificates, drives a crucial
need to apply automatic techniques to better as-
sist medical professionals in creating and manag-
ing medical information. A standard procedure in
hospital is to assign the International Classifica-
tion of Diseases (ICD) codes to diseases appear-
ing in medical texts by professional coders. As a
result, several recent studies have been devoted to
automatically extracting ICD code from medical
texts to help manual coders (Crammer et al., 2007;
Farkas and Szarvas, 2008; Aronson et al., 2007;
Kavuluru et al., 2015, 2013; Zuccon and Nguyen,

Figure 1: An example radiology report with man-
ually labeled ICD-9-CM code from CMC dataset.

2013; Koopman et al., 2015).
In this paper, we focus on ICD-9-CM (the 9th

version ICD, Clinical Modification), although our
work is portable to ICD-10-CM (the 10th version
ICD). The reason to conduct our study on ICD-
9-CM is to compare with the state-of-art methods,
whose evaluations have mostly conducted on ICD-
9-CM code (Aronson et al., 2007; Kavuluru et al.,
2015, 2013; Patrick et al., 2007; Ira et al., 2007;
Zhang, 2008). ICD-9-CM codes are organized hi-
erarchically, and each code corresponds to a tex-
tual description, such as ”786.2, cough”. Multi-
ple codes can be assigned to a medical text, and a
specific ICD-9-CM code is preferred than a more
generic one when both are suitable (Pestian et al.,
2007). Figure 1 shows a code assignment example
where a radiology report is labeled with ”786.2,
cough”.

Existing methods for automatic ICD-9-CM as-
signment have been mostly supervised methods
because of the effectiveness the training; how-
ever, classification performance heavily relies on
the sufficiency of training data (He and Garcia,
2009). To certain degree, micro-average mea-
sures, commonly used to evaluate the classifica-
tion performance of existing algorithms, pays at-



Figure 2: The distribution of radiology reports for
45 ICD-9-CM codes in the CMC dataset.

tention to the correctness of the code assignment
to each EHR (individual case), which helps to
hide the impact of unbalanced training data. How-
ever, a useful classification system should perform
consistently across all ICD-9-CM codes regard-
less of the popularity of the codes (Jackson and
Moulinier, 2007). This motivated us to examine
the imbalanced training data and its impacts to the
classifier. Specifically, we pay more attention to
macro-average measures, which helps to examine
the consistency across all codes.

Unfortunately, in a real dataset for studying
ICD-9-CM code classification, the data available
for each code is highly imbalanced. For example,
Figure 2 shows the count of available radiology
reports for each of the 45 ICD-9-CM codes in the
CMC dataset (Pestian et al., 2007). Common dis-
eases like ”786.2, cough”, can have 266 reports
as the training data, whereas unpopular disease
”758.6, Gonadal dysgenesis” only has one. Sim-
ilarly, Kavuluru et al. (2015) found that 874 of
1,231 ICD-9-CM code in their UKLarge dataset
have less than 350 supporting data, and only 92
codes have more than 1,430 supporting data. In
another example, Koopman et al. (2015) found
that 85% of the whole death certificate dataset are
related to top 20 common cancers, and only rest
15% is associated with 65 rarer cancers. These
long tail supporting data problems are very com-
mon, which makes data imbalance an noticeable
problem.

Our approach for resolving this problem is to
introduce additional information resources. Fur-
thermore, due to the privacy concern of medical-
related content, this study is particularly interested
in obtaining extra relevant training data from pub-

licly available medical datasets. PubMed1, as a
vast and broad medical literature dataset, covers
a great number of disease related information and
imposes few restrictions on data access. There-
fore, it is a perfect starting point to explore our
approach. The hypothesis is that training data can
be obtained from PubMed articles that talk about a
disease corresponding to a ICD-9-CM code. With
the abundant PubMed articles, we would be able
to alleviate the training data imbalance problem.

There are several contributions in our study.
Firstly, we examine the data imbalance problem
in ICD-9-CM code assignment. Secondly, we pro-
pose and compare several methods to resolve the
data imbalance problem. Thirdly, we give a com-
prehensive discussion on the current classification
challenges. Finally, our method can be adapted
to ICD-10-CM code assignment task with minor
modifications.

The rest of this paper is organized as follows.
In Section 2, we will discuss related research. Our
methods and experiments will appear in Section 3
and 4. Limitations are discussed in Section 5 and
the conclusion is provided in Section 6.

2 Related Work

The existing studies of automating ICD-9 code
assignment can be classified into two groups.
Through examining how professional coders as-
signing ICD codes, the first one used rule-based
approaches. Ira et al. (2007) developed a rule-
based system considering factors such as uncer-
tainty, negation, synonymy, and lexical elements.
Farkas and Szarvas (2008) used Decision Tree
(DT) and Maximum Entropy (ME) to automati-
cally generate a rule-based coding system. Cram-
mer et al. (2007) composed a hybrid system con-
sisting of a machine learning system with natural
language features, a rule-based system based on
the overlap between the reports and code descrip-
tions, and an automatic policy system. Their re-
sults showed better performance than each single
system.

The second group employed supervised ma-
chine learning methods for the assignment task,
and their performance has been being equivalent
or even better than those rule-based systems that
need experts manually crafting knowledge. Aron-
son et al. (2007) used a stacked model to combine
the results of four modules: Support Vector Ma-

1https://www.ncbi.nlm.nih.gov/pubmed/



chine (SVM), K-Nearest Neighbors (KNN), Pat-
tern Matching (PM) and a hybrid Medical Text
Indexer (MTI) system. Patrick et al. (2007) used
ME and SVM classifiers, enhanced by a feature-
engineering module that explores the best combi-
nation of several types of features. Zhang (2008)
proposed a hierarchical text categorization method
utilizing the ICD-9-CM codes structure. Zuc-
con and Nguyen (2013) conducted a comparison
study on four classifiers (SVM, Adaboost, DT, and
Naive Bayes) and different features on a 5,000
free-text death certificate dataset, and found that
SVM with a stemmed unigram feature performed
the best.

Along with the introduction of supervised meth-
ods, many past studies indicated that data imbal-
ance problem can severely affect the classifier’s
performance. For example, Kavuluru et al. (2015)
found that 874 of 1,231 ICD-9-CM codes in UK-
Large dataset have less than 350 supporting data,
whereas only 92 codes have more than 1,430 sup-
porting data. The former group has macro F1
value of 51.3%, but the latter group only has
16.1%. To resolve data imbalance problem, they
used optimal training set (OTS) selection approach
to sample negative instance subset that provides
best performance on validation set. However, OTS
did not work on UKLarge dataset because sev-
eral codes have so few training examples that even
carefully selecting negative instances could not
help. When Koopman et al. (2015) found that
85% of the whole death certificate dataset is asso-
ciated with only top 20 common cancers, whereas
the other 65 rarer cancers only have the rest 15%
of the dataset, they tried to construct the balanced
training set by randomly sampling a static num-
ber of negative examples for each class. Their re-
sults reflected the benefits of having more train-
ing data in improving the classifiers’ performance.
Since result of original model learned with imbal-
anced data is not provided, we cannot know the ac-
tual improvement. In addition, to deal with codes
that only appear once in the dataset, Patrick et al.
(2007) used a rule-based module to supplement
ME and SVM classifiers.

Consistent to the existing works, our approach
utilizes supervised methods for automatic ICD-9-
CM code assignment, and our focus is on address-
ing the training data imbalance problem. But our
work tries to solve the data imbalance problem by
adding extra positive instances, which is not lim-

ited to the existing training data distribution or ex-
pert’s knowledge. Adding positive instances have
been proven to be effective in supervised machine
learning in other domains(Caruana, 2000; He and
Garcia, 2009), and we are first to find open source
dataset as supplementary data for improving ICD-
9-CM assignment performance.

3 Methods

In this section, we will first introduce the dataset
on which our methods will be evaluated, then we
propose two methods of collecting supplementary
training data from PubMed dataset.

3.1 Dataset

We validate our methods on the official dataset
of the 2007 Computational Medicine Challenge
(CMC dataset), collected by Cincinnati Children’s
Hospital Medical Center (Pestian et al., 2007),
which is frequently used by researchers working
on the ICD-9-CM code assignment task. The
CMC dataset consists of training and testing
dataset, but only training dataset is accessible for
us. Fortunately, most studies publish their system
performance on both training and testing dataset,
and then we can compare our methods with state-
of-art methods. This corpus consists of 978 radi-
ological reports taken from real medical records,
and each report has been manually labeled with
ICD-9-CM codes by professional companies. The
example in Figure 1 comes from this dataset. In
total, there are 45 ICD-9-CM codes appearing in
the CMC dataset, and each report is labeled with
one or more ICD-9-CM codes. This is a very im-
balanced collection, with around half codes having
less than 10 training data (see Figure 2).

3.2 Method I: Retrieving PubMed articles
using ICD-9-CM code official description

Through examining the reports available to us, and
also based on the discussions in previous work
(Farkas and Szarvas, 2008; Ira et al., 2007; Cram-
mer et al., 2007; Farkas and Szarvas, 2008), we
hypothesize that the text description part of ICD-
9-CM code can play important role for code as-
signers to build up the connection between a med-
ical text and a ICD-9 code. Therefore, this mo-
tivated us to view the identifying extra training
data in PubMed for an ICD-9-CM code as a re-
trieval problem where the text description part of
an ICD-9-CM code can act as the query, and the



whole PubMed dataset as a document collection.
For example, based on ICD-9-CM code ”786.2,
cough”, we can retrieve PubMed articles with a
query ”cough”. Our initial informal testing con-
firmed our hypothesis.

To avoid bring back too much noise, we re-
stricted the PubMed retrieval to only search on
the article title field. Our motivation is that the
title generally introduces the main topic of the
whole paper. For the same reason, we also only
utilized the title and abstract of top returned arti-
cles as the supplementary training data. In case of
empty retrieval result, certain ICD-9-CM descrip-
tion terms that would not appear in PubMed ar-
ticle titles, such as ”other”, ”unspecified”, ”spec-
ified”, ”NOS”, and ”nonspecific”, are removed
from the query. For example, ICD-9-CM code
”599.0”, whose description is ”urinary tract infec-
tion, site not specified”, will generate a cleaned
query ”urinary tract infection”, and ICD-9-CM
code ”596.54”, whose description is ”neurogenic
bladder NOS”, will generate a cleaned query ”neu-
rogenic bladder”.

3.3 Method II: Retrieving PubMed articles
with both official and synonyms
ICD-9-CM code description

Despite great overlap among them, ICD-9-CM
code descriptions and the radiology reports in the
CMC collection are written by different groups of
people with different purposes. Therefore, there
could be term mis-match problems between them.
When this happens, it is actually better to not use
the terms in the ICD-9-CM official description as
the query for finding relevant PubMed articles,
but actually to use the related terms in the CMC
dataset as the query terms instead. This would en-
able the model trained on these returned PubMed
articles can be more effectively classifying CMC
reports. For example, the description ”Anorexia”
of code ”783.0” does not appear in CMC dataset.
Instead, ”loss of appetite” exists in the radiology
reports labeled with ”783.0”, while according to
data in ICD9Data.com, ”loss of appetite” is the
synonym of ”Anorexia”. Therefore, in this case,
it is better to use ”loss of appetite” rather than
”Anorexia” to be the query when search for train-
ing data in PubMed.

ICD9Data.com is an online website, providing
rich and free ICD-9-CM coding information. It
contains code definition, hierarchy structure, ap-

proximate synonyms, etc. We crawled the 45
codes’ synonyms from the website. In method II,
besides the queries from the official description,
we also conducted PubMed searches with queries
based on the synonyms of the descriptions. Each
synonym is an individual PubMed query, and only
when all its terms appear in CMC dataset, the
query is considered. If one ICDcode has n queries
and totally needs m supplementary documents for
training, only top m/n retrieved PubMed articles
from each query are considered.

4 EXPERIMENTS

4.1 Evaluation metrics

Following the past studies (Pestian et al., 2007;
Kavuluru et al., 2015), we evaluate the classifica-
tion performance through a micro F1 score (i.e.,
sum of the individual classification performance
and divided by the individual amount) and a macro
F1 score (i.e., sum of the classifiers performance
and divided by the classifiers amount). We ex-
pect that by alleviating the data imbalance prob-
lem, macro F1 scores can increase significantly.
All experiments in this study have gone through
10-fold cross validation, because it can provide a
reliable result when data is limited (Witten et al.,
2016).

4.2 Pre-process and Features

Following the past studies (Crammer et al., 2007;
Aronson et al., 2007; Kavuluru et al., 2015, 2013;
Koopman et al., 2015; Patrick et al., 2007; Ira
et al., 2007), the CMC dataset is preprocessed with
following steps:

• Full name restoration. Medical abbreviation
restoration is a hard topic, which is not ex-
plored in this study. We manually generate a
list of full names for abbreviations appearing
in CMC dataset 2.

• Word lemmatization. Lemmatization of
words are restored with WordNet 3.0 (Miller,
1995).

• Negation detection and removal. Negex
(Chapman et al., 2001) is used to detect
the negation expression, and negation target
terms are removed after detection.

2https://github.com/daz45/CMC-data-set-
abbreviations/tree/master



Figure 3: Feature selection on LR and SVM.

• Phrase recognition. MetaMap (Aronson and
Lang, 2010) is utilized to extract the medical
concept phrase appearing in the text, which is
appended to the text.

After preprocessing, the example radiology re-
port in Figure 1 will be ”ten year old with chest
pain x two week. the lung be well expand and
clear. there be. the cardiac and mediastinal silhou-
ette be normal. there be. chest pain”. Supplemen-
tary data collected from PubMed will be prepro-
cessed in the same way.

4.3 Baselines
According to the past studies(Farkas and Szarvas,
2008; Aronson et al., 2007; Kavuluru et al., 2015),
Support Vector Machine (SVM) and Logistic Re-
gression (LR) are the most effective and com-
monly used classification models in this task.
Therefore, we selected them as the two baselines.
Each ICD-9-CM code has one binary classifier
implemented using Scikit-Learn(Pedregosa et al.,
2011). We name these two sets of baselines as
Baseline LR and Baseline SVM.

Features consist of unigrams and bigrams ap-
pearing in preprocessed radiology reports, and the
feature vector values are binary, indicating the ap-
pearance or absence of the word in text.

We performed feature selection on two base-
lines to avoid over-fit and extra computation cost.
χ2 based feature selection was employed for fea-
ture selection (Liu and Setiono, 1995). As shown
in Figure 3, We find that 500 features can provide
stable micro F1 performance and best macro F1
performance for Baseline LR and Baseline SVM.
In all the following experiments, all classifiers are

trained on these 500 selected features.
Our baseline performance were compared with

the state-of-art methods in Table 1. Stacking
is a stacked model combining four classification
models (Aronson et al., 2007). Hybrid rule-
based+MaxEnt is a hybrid system combining rule-
based method with MaxEnt (Aronson et al., 2007).
Although Table 1 shows that their performance is
significantly better than our baselines, for the pur-
pose of studying the methods for addressing im-
balanced training data, we have to use the two
current baselines since these advanced and com-
plicated systems would hide the effects that we
want to observe. In addition, any improvement we
achieve in single classifier can be later integrated
into these systems, which could be an interesting
future work. These methods concentrated on mi-
cro averaging performance, while in this study we
will explore the macro averaging performance.

Method Micro F1
Baseline LR 86.51%
Baseline SVM 87.26%
Stacking 89.00%
Hybrid rule-based+MaxEnt 90.26%

Table 1: Baseline performance and existing best
performed methods from related work.

Figure 4 shows the individual classification per-
formance of 45 classifiers, and we can find an un-
stable performance across 45 classifiers. We use
Macro F1 score as the split line, and we can find
that, for both baseline system, there are 21 classi-
fiers having a below-average performance, and all
of them have relatively less training data than the
classifiers with above-average performance. This
indicates that the data imbalance leads to the per-
formance instability across all classes.

With the Macro F1 score, we separate 45 classi-
fiers into two groups: Group 1 consists of 24 clas-
sifiers, union set of classifiers with below-average
performance in two baselines, and Group 2 con-
sists of rest 21 classifiers with above-average clas-
sification performance. Though Group 1 has 24
classifier, radiological reports labeled with them
only takes 11.56% of 978 reports. To deal with
this data imbalance problem, we will introduce
supplementary training data from PubMed dataset.
Through adding additional data, we expect that
classification performance of the whole system,
especially Group 1, will be improved.



Figure 4: Individual classification performance of 45 classifiers trained with LR and SVM model in
Baseline.

4.4 Experiment I: retrieving PubMed articles
with ICD code official description

In the first experiment, supplementary data is col-
lected based on ICD-9-CM code official descrip-
tion, as described in method I. The supplement-
ing document size is set to be 10, 20, 40 and
60. Supplementary training data is added to 24
classifiers in Group 1. We name these two new
runs as Group 1 Description LR (G1 desc LR)
and Group 1 Description SVM (G1 desc SVM),
appended with supplementary data size. The re-
sults in Table 2 also show that supplementing 10
documents can generate best performance, and
with more documents added, both macro and mi-
cro F1 will decrease.

Method Micro F1 Macro F1
Baseline LR 86.51% 51.52%
G1 desc LR 10 86.68% 55.78%
G1 desc LR 20 86.07% 55.23%
G1 desc LR 40 85.18% 52.01%
G1 desc LR 60 84.97% 51.40%
Baseline SVM 87.26% 48.03%
G1 desc SVM 10 86.96% 57.09%
G1 desc SVM 20 86.67% 55.43%
G1 desc SVM 40 85.87% 57.61%
G1 desc SVM 60 86.25% 54.77%

Table 2: Enhance classifiers in Group 1 with sup-
plementary data collected with method I, while the
evaluation is performed on all classes.

Through Wilcoxon Signed Ranks test, there is
no significant difference between G1 desc LR 10

and Baseline LR. Nor does G1 desc SVM 10.
Further, we compare both methods against base-
line on Group 1 and Group 2 separately. How-
ever, there is still no significant difference existing.
Take G1 desc SVM 10 for example, from Figure
5, we can see that 11 classes still have F1=0%,
while 5 classes’ performance decrease, and only 8
got F1 improved. It indicates that the method I is
ineffective.

After exploring the results, we find sometimes
the supplementary data does not help training. For
example, for ICD-9-CM code ”783.0 Anorexia”,
the classification performance stays 0%. The
corresponding radiology report doesn’t have term
”Anorexia”, making the supplementary data use-
less. It implies we need to collect PubMed arti-
cles containing same features with the radiology
reports in CMC dataset.

4.5 Experiment II: Retrieving PubMed
articles with ICD code official and
synonyms descriptions

In this second experiment, we collect PubMed
data through the ICD-9-CM code’s both of-
ficial and synonyms description that appears
in CMC dataset. We name these two runs
as Group 1 Synonym LR (G1 syn LR) and
Group 1 Synonym SVM (G1 syn SVM). Due to
the paper size limitation, here we only show the
best results with supplementary document size
being 10 in Table 3.

Through Wilcoxon Signed Ranks test,
G1 syn SVM 10 significantly outperforms
baseline (p − value < 0.01), but has no signifi-



cant difference compared with G1 desc SVM 10.
However, if only classifiers in Group 1 are consid-
ered, G1 syn SVM 10 significantly outperforms
G1 desc SVM 10 (p − value < 0.01). This
indicates that our propose method II can generate
effective supplementary training data. On the
other hand, G1 syn LR 10 is found to outperform
Baseline LR significantly only on Group 1 classes
(p− value < 0.01).

Method Micro F1 Macro F1
Baseline LR 86.51% 51.52%
G1 desc LR 10 86.68% 55.78%
G1 syn LR 10 86.30% 62.85%‡
All syn LR 10 86.60% 62.19%‡
Baseline SVM 87.26% 48.03%
G1 desc SVM 10 86.96% 57.09%
G1 syn SVM 10 87.22% 67.43%†‡
All syn SVM 10 87.88% 64.54%†‡

Table 3: Experiment results. †means significantly
outperform baseline. ‡means significant outper-
form baseline on Group 1.

It shows that on SVM model, PubMed data
collected with ICD-9-CM code descriptions syn-
onyms works better in solving the data imbalance
problem than with the official descriptions. After
data supplementation, there are still 6 classifiers
with F1 score being 0%, which will be further dis-
cussed in Section 5.

4.6 Experiment III: adding supplementary
training data to all classifiers

In the third experiment, we add supplemen-
tary data to all 45 classifiers to explore whether
adding supplementary data to the classifiers that
originally have sufficient training data still can
gain performance improvement. We name these
two runs as All Synonym LR (All syn LR) and
All Synonym SVM (All syn SVM). Also, only
the best results with supplementary document size
being 10 is shown in Table 3. Through Wilcoxon
Signed Ranks test, All syn SVM 10 significantly
outperforms the baseline, and All syn LR 10 sig-
nificantly outperforms the baseline only on Group
1 (p − value < 0.01), but both have no signifi-
cant difference with G1 syn and G1 desc. These
means that adding supplementary training data is
effective on solving data imbalance problem, but
for the classifiers that originally have sufficient
training data, extra training data seems have no

significant effect.

5 Discussion

Experiment results indicates that our proposed
supplementing training data method can help the
classifiers to reach to a relatively balanced perfor-
mance. Such improvement mainly comes from
changing the word weight ranking so that im-
portant words rank higher. For example, for
code ”758.6 turner syndrome”, in the baseline LR
(F1=0%), top 3 features with highest weights are
”duplicate left, partially, turner syndrome”. But
in G1 syn LR 10 (F1=67%), top 3 features are
”turner, turner syndrome, syndrome”. Supplemen-
tary data trains term in ”turner syndrome” a higher
weight in LR model, explaining this code’s classi-
fication performance increase.

In addition, supplementary data will improve
classification through boosting the weight of the
features. For example, the top features for code
”786.59, Other chest pain” are basically similar
in both baseline LR (F1=0%) and G1 syn LR 10
(F1=40%), including ”tightness, chest tightness,
chest pain”. However, the weight differs a lot. For
baseline LR, weights are all under 1.5, while in
G1 syn LR 10, top 5 features are all above 1.5, in-
dicating the classification model have much higher
confidence on these features.

Finally, supplementary data mainly support
code assignment effectively in Group 1, and we
find that classification performance in Group 2 ba-
sically has no significant difference across all ex-
periments. Meanwhile, 978 reports, dominated
by Group 2 classes, also show no significant dif-
ference across all experiments. Therefore, extra
training data does not improve Group 2’s perfor-
mance, and hence supplementary data is not sug-
gested for classes having sufficient training data.

Besides, our proposed methods can be directly
used in ICD-10-CM classification with little mod-
ification. Just update the PubMed query with the
ICD-10-CM textual descriptions and synonyms.

Though data imbalance problem has been
largely alleviated, there are still a few classifiers
in Group 1 have poor performance. After explor-
ing, we think there are mainly four reasons:

• Word level feature matching limitation. For
example, description of code ”V72.5 Radio-
logical examination” does not appear in the
collection, and it has no synonyms. Radio-
logical examination actually means a variety



Figure 5: Individual classification performance of 45 classifiers on Baseline and three experiments.

of imaging techniques, and such word level
feature matching cannot help classification.

• ”History of” ICD-9-CM codes. For codes
”V13.02, Personal history, urinary tract in-
fection” and ”V13.09 Personal history of
other specified urinary system disorders”,
adding supplementary data doesn’t help their
performance. We find their radiology re-
ports are basically classified to ”599.0 urinary
tract infection” and ”593.70 vesicoureteral
reflux”. ”history of” feature is ignored. Extra
training data has no effect on this problem.

• Speculative expression. In prepossessing
procedure, negation terms are removed, but
speculative expressions are kept. It results in
that when doctor is not sure whether a patient
may get a disease, but write it down to re-
ports, classification results will rely on these
speculative terms, and cause false positive.
For example, code ”518.0” has a low F1 score
because in many reports labeled with other
codes, doctors write that the patient may have
disease ”atelectasis”, while ”atelectasis” is a
very important word to recognize ”518.0”.

• Data missing due to expert disagreement. In
CMC dataset, three experts manually assign
codes to 978 radiology reports. Only when
two or more experts agree, code is approved.
However, sometimes the conflict opinions re-

sults in code assignment failure. For exam-
ple, reports 99619963 and 99803917 should
be labeled with ”741.90 Spina bifida”. How-
ever, one expert assigned ”741.90”, another
assigned ”741.9”, and the third expert miss
this code at all. This led to ”741.90 Spina bi-
fida” was not assigned to these two reports.
However, with the supplementary data added
into the training, our method correctly as-
signs ”741.90 Spina bifida” to these two re-
ports, but this assignment was counted as
wrong since the ground truth does not have
this code due to expert disagreements.

6 Conclusion and Future Work

In this study, we studied to address the data im-
balance problem in ICD-9-CM code automatic as-
signment task. Using ICD-9-CM codes synonyms
can accurately search medical texts relevant docu-
ments from PubMed. Collected data, used as sup-
plementary training data, can significantly boost
systems macro averaging performance as the data
imbalance problem is largely alleviated. However,
for the classifiers that originally have sufficient
training data, additional data basically has no sig-
nificant effect. As future work, we will modify
the Context algorithm (Harkema et al., 2009) to
detect the historical mentions and speculative ex-
pressions in the radiology reports. Also, we would
explore the difference of same features extracted
from different field of radiology reports.
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