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Abstract

Word embeddings are high-dimensional
vector representations of words and are
thus difficult to interpret. In order to deal
with this, we introduce an unsupervised
parameter free method for creating a hi-
erarchical graphical clustering of the full
ensemble of word vectors and show that
this structure is a geometrically meaning-
ful representation of the original relations
between the words. This newly obtained
representation can be used for better un-
derstanding and thus improving the em-
bedding algorithm and exhibits semantic
meaning, so it can also be utilized in a va-
riety of language processing tasks like cat-
egorization or measuring similarity.

1 Introduction

There are different ways to assess word embed-
dings (Yaghoobzadeh and Schütze, 2016). While
some authors focus on general properties, as for
example Levy et al. (2015) or Hashimoto et al.
(2016), most evaluations are with respect to spe-
cific tasks. Examples of the latter include the
works by Baroni et al. (2014), Schnabel et al.
(2015), or Rothe and Schütze (2016), to name but
a few. The objective of this paper is to intro-
duce a method for getting a grasp of the global
structure of embeddings, which is different from
general schemes for dimensionality reduction like
t-SNE (Maaten and Hinton, 2008), the methods
summarized by Van Der Maaten et al. (2009), or
visualization interfaces such as Roleo (Sayeed
et al., 2016) and GoWvis (Tixier et al., 2016). The
method presented here is a specific way of cluster-
ing (a field nicely reviewed by Jain et al. (1999))
that works particularly well for the current objec-
tive.

We present a global analysis of the statistical
properties of the embedding space. This is based
on the output of the well-known word2vec pro-
gram (Mikolov et al., 2013), using the example
of the dataset published alongside the source code
on the web1, which was generated with the skip-
gram model with negative sampling. This dataset
was trained on parts of the English Google news
corpus and consists of 3,000,000 words with 300-
dimensional embedding vectors. First, densities
in the embedding space will be explored. Based
on that a parameter free hierarchical graph-based
clustering approach is developed that is the basis
of a tool that allows to explore the neighborhood
of a term of interest.

The paper is structured as follows: After a quick
discussion of statistical properties of the dataset,
the concept of the graphical neighborhood hierar-
chy is explained. Specific properties of the result-
ing graphs are brought into the context of pecu-
liarities of the dataset for showing that this repre-
sentation is particularly well-suited. Finally, the
semantic properties of the graphs are briefly eval-
uated.

2 Properties of Embedding Spaces

First, a look at global statistics of the dataset lays
a basis for justifying later choices and interpreting
the hierarchy. Herein, special care must be taken
with respect to effects of the high dimensionality.

The distribution of the values of single vector
components all look very similar and peak clearly
at the origin, but they exhibit relatively heavy tails.
The distribution of the L2-norm2 of the embedding
vectors can be seen in fig. 1, both for all and rare
words, where the latter are those that are not found

1https://code.google.com/archive/p/
word2vec/

2For a discussion of the choice of distance function, see
section 3.2 below.
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in the 1 billion word corpus (Chelba et al., 2013).
Even though the curves show a drop at the origin
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Figure 1: Probability densities for finding a word
vector with the given norm, for all and rare words
(left axis, density for rare words rescaled for re-
flecting proportion) and plot of the resulting aver-
age density at the respective distance to the origin
(right axis).

and a clear peak at slightly above one, they are
mostly a consequence of the high dimensionality
of the embedding space. This becomes apparent
in the plot of the actual average density (words per
volume) at a given distance from the origin (also
fig. 1), which decreases very rapidly and mono-
tonically. It can be concluded that embedding vec-
tors are highly concentrated around the origin, but
that common words tend to lie at an intermediate
distance to the origin and do not fully follow the
general distribution.

Next, a principle component analysis can be
done in order to evaluate how isotropic the dataset
actually is. It reveals that the largest and smallest
eigenvalues are only about an order of magnitude
apart and that the top 20 percent of eigenvalues
account for roughly 50 percent of the total vari-
ance in the dataset. While this is clearly not fully
isotropic, there appear to be no directions that are
completely superfluous. For the global picture, ap-
proximate isotropy is thus a fairly reasonable as-
sumption.

To complete the general statistical exploration
of the embedding space we want to look at spe-
cific word classes (common nouns, verbs and ad-
jectives) versus other words that belong to none of
these classes. We also want to explore the impact
of the word frequency on the position in the em-
bedding space. Figure 2 gives the results. The first
– however non-surprising – observation is that the
center of the embedding space is made up of low
frequency words that are not nouns, verbs or ad-
jectives. These three POS classes densely popu-

late the surface of a 300 dimensional sphere in a
distance of three to four from the center of the em-
bedding space. Exploring this rim in more detail
is most interesting for applications. For this we
will develop a parameter free method to study the
vicinity of a word of interest to the user of the tool.
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(b) common nouns, verbs, and adjectives

Figure 2: Probability density for finding an em-
bedding vector of a word of given frequency and a
given L2-norm and thus distance from the origin.
Note that the density is given in log-scale.

3 Nearest Neighbor Graph

Consider a set of embedding vectors W that is
equipped with a distance function d : W ×W →
R+

0 . The nearest neighbor graph (NNG) on W
is a directed weighted graph where each vertex v
has outdegree one and is connected to its nearest
neighbor w = arg minw′ d(v, w′), with the weight
corresponding to the distance. In case of ambi-
guity, the nearest neighbor has to be selected via
additional criteria or randomly. Note that the near-
est neighbor relation need not be reciprocal. The
k-NNG which incorporates the notion of k near-
est neighbors can be defined in a similar way, but
it lacks most of the nice properties of the simple
NNG, some of which will be discussed next.

Naive implementations for nearest neighbor
search scale quadratically with the number n =
|W| of nodes, however, O(n log n)-solutions are
available (Sankaranarayanan et al., 2007), whose
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efficiency depends on the dimensionality of W .
Thus, in particular for high-dimensional spaces,
approximate nearest neighbor search may be much
more efficient (Muja and Lowe, 2009).

3.1 Clusters
Here, the weakly connected components of an
NNG are denoted as clusters. That is to say, there
is a path between every two vertices within a clus-
ter, if the direction of the edges is ignored. It can
readily be seen that each cluster must have exactly
one cluster root, which is a pair of vertices that see
each other as their nearest neighbor. Apart from
that, there cannot be any cycles in a cluster, so it
can be considered as two trees each of which is
rooted in one vertex of the cluster root. This tree-
like and very clear structure of the clusters makes
them interesting for our purposes. Example clus-
ters extracted from the NNG of the word2vec
dataset are depicted in fig. 5, which will be dis-
cussed below.

3.2 Choice of Distance Function
The particular choice of a distance function d may
drastically affect the form of an NNG. In general,
it is advantageous if d has the properties of an ac-
tual metric, because then it corresponds closely to
the human notion of a distance which makes it eas-
ier to interpret the results.

For a variety of additional reasons, here, the
classical Euclidean distance

dE(v, w) :=
√∑

i

(vi − wi)2 (1)

is chosen. Most importantly, dE is invariant under
orthogonal transformations (rotating and flipping),
which goes well with the apparent isotropy of the
embedding space. With this distance function, no
particular component or direction is given more at-
tention than another. Besides that, the Euclidean
distance is relatively cheap and easy to compute
and there is a lot of literature on specialized meth-
ods for finding NNGs with this metric. Further-
more, dE is loosely related to the cosine similarity
that is used as the main ingredient during the train-
ing of the embedding mapping.

4 Neighborhood Hierarchy

By means of an NNG, the local structure between
the words within each of its clusters can be un-
derstood fairly well, but any information about

the relationship between different clusters is com-
pletely lost. In order to deal with that, the sim-
ple NNG can be extended via a neighborhood hi-
erarchy (NH), which adds information about the
neighborhood relation between clusters, clusters
of cluster and so on. A sketch of the first two lev-
els of such a hierarchy is given in fig. 3. Each clus-
ter is equipped with what could be called a macro
vertex, which might for example be the mean of
the vertices in the cluster, the center of the cluster
root, or the most frequent (and thus hopefully most
important) word in the cluster. Then the NNG of
the macro vertices can be determined. This leads
to new clusters, new macro vertices, another NNG
and so forth, till the top level is reached, which
contains only one cluster of macro vertices. In or-
der to make the whole hierarchy browsable, the
macro vertices can be given a clearer meaning by
assigning one representative word to each of them.
This word might for example be the nearest one to
the macro vertex or the most frequent word in the
cluster.

While the nearest neighbor relationship alone
is somewhat problematic, as small changes in
the dataset may result in huge differences in the
cluster layout (in particular in high-dimensional
spaces), the hierarchy smooths this effect away to
some degree, as lower-level flipping between clus-
ters will probably not affect higher level clusters.

(a) 1st level (words)

(b) 2nd level (macro vertices)

Figure 3: Sketch of a cluster hierarchy. The mas-
sive dots are the centers of mass of the clusters of
small dots and form a cluster themselves.

5 Hierarchy of Vector Embeddings

The method from the previous section can now be
applied to the set of embedding vectors. The word
vectors form clusters and the macro vertices in-
troduced above can be seen as generic or in some
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way paraphrasing terms for the words in their clus-
ter (see section 6 for semantic evaluation), under
the given premise that similar words are mapped
to nearby vectors. The NH produces a partitioning
of the vector space in the spirit of a Voronoi dia-
gram at various levels of coarseness and can thus
be used to navigate through the otherwise hard to
grasp high-dimensional space.

5.1 General Properties of the Hierarchy
The NH of the word2vec dataset has a total of
six levels. The first level contains the words them-
selves, higher levels comprise macro vertices as
described above. General properties of the graphs
on the different levels are given in table 1. In ac-
cordance with the hierarchical structure, the num-
ber of words and thus the number of clusters de-
crease exponentially.

Typical characteristics of the graphs are
strongly influenced by the fact that the graphs are
NNGs. As each cluster has one root and each of
the n vertices has out-degree one, the reciprocity

r :=
#reciprocal edges

n
(2)

is proportional to the inverse of the average num-
ber of words per cluster. The more elaborate mea-
sure of reciprocity ρ introduced by Garlaschelli
and Loffredo (2004) reduces to

ρ =
r(n− 1)− 1

n− 2
≈

n�1
r (3)

and is thus almost the same as r for the larger
graphs. Note that the expression (3) is not defined
for the sixth level. ρ is rather low compared to
other natural networks, but interestingly it lies just
in the range of other word networks (Garlaschelli
and Loffredo, 2004).

Here, the depth d of the graphs for a specific
leaf is the number of edges between the leaf and
the respective cluster root. The average of d over
all leafs and the maximum value of d are presented
in table 1. While max(d) decreases exponentially,
possibly in accordance with the shrinking of the
cluster size, particularly the constancy of the mid-
level ∅d is striking and a sign of two contrary pro-
cesses. The longer connections on the lower levels
are compensated for by more small connections,
or, in other words, the smaller high-level clusters
are more regular in terms of their depths.

On all levels, the NNGs appear to be scale
free (Barabási and Bonabeau, 2003), with the con-
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Figure 4: Log-log scatter plot of the number of
times a first-level vertex has a particular indegree.
While this point cannot be represented in the chart,
there are about 1.8× 106 vertices with an indegree
of 0 in the NNG.

level 1 2 3 4 5 6

# words 3·106 99,884 6750 540 55 2
# clusters 99,884 6750 540 55 2 1
∅ w./cl. 30.0 14.8 12.5 9.8 27.5 2.0
r 0.067 0.14 0.16 0.20 0.073 1.0
ρ 0.067 0.14 0.16 0.20 0.055 –
∅ d 6.6 2.5 2.5 2.5 2.4 –
max(d) 25 16 10 6 4 –

Table 1: General properties of the NH of the
word2vec dataset. In the third row, the aver-
age number of words per cluster is given. See sec-
tion 5.1 for definitions of the other quantities.

straint that the higher-level graphs contain too lit-
tle vertices for making a definite statement about
that. Exemplarily, this feature can be seen for the
first-level graph in fig. 4. Scale freeness is pri-
marily associated to processes in which new ver-
tices are attached preferably to those existing ver-
tices that already have a large indegree. In the
current context this sheds a light on the behav-
ior of the learning algorithm, specifically because
scale freeness is encountered on all levels. A pos-
sible interpretation is that the algorithm leads to
a multi-level attaching of words and groups of
words while trying to put similar words as close
to each other as possible. Interestingly, different
semantic networks exhibit the scale-free property,
too (Steyvers and Tenenbaum, 2005).

5.2 Examples of Clusters

Examples of first-level clusters extracted from the
word2vec dataset can be found in fig. 5. At this
point, only the surface can be scratched, because
there are thousands of such clusters and many of
them are interesting in some way.

The dataset contains a pretty raw set of words;
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(b) Cluster below “dropped”

Well

Okay

Uh Ummm

Ok Uhm

Okay okayAlright

(c) Cluster below “Well”

Figure 5: Example clusters from actual dataset,
with cluster roots marked gray. The most frequent
word of the cluster is chosen as the macro vertex
and given in the description.

proper names, capitalized or inflected words, mis-
spellings, or fillers have not been stripped from
the data. From the context-based training method
(Mikolov et al., 2013) it can be expected that syn-
tactically similar words end up close to each other,
which is indeed seen in the NH, as in fig. 5c, where
fillers and certain discourse items, all of them cap-
italized, form a cluster. This might also explain
that only plural forms have gathered in fig. 5a.
While this often means that connected items are
also semantically similar, antonyms like “drops”
and “skyrockets” in fig. 5b are frequently close
to each other due to their similar syntactic roles.
Despite such problems, it must be stressed that
fig. 5 is not the result of extensive cherry picking,
but that semantically meaningful clusters are the
rule, even if the large number of proper names and

more or less meaningless padding words some-
times shadow the more interesting clusters.

After this glance at some first-level clusters, an
example of the actual hierarchy is shown in fig. 6.
On the lowest levels, the words are closely related
to their neighbors and the words in their parent
clusters, just as it has been the case in fig. 5. This
is still the case on the next levels, but, in general,
the higher one gets in the hierarchy, the looser the
connection to the words on the lower levels, be-
cause a lot of words are collected beneath a spe-
cific high-level word and not all of them can be
equally suitable. In the specific situation in fig. 6,
the words on the third level are mostly related to fi-
nance and economy and the same accounts for the
fourth level, with more and more rather unspecific
words in between. Revealing this is just what the
hierarchy is good for: The fact that “index”-related
words are collected in the “financial region” of the
embedding space is not self-evident. If the em-
beddings would not have been trained on a news
corpus but on scientific resources, the position of
the word “index” would very likely be a different
one.

Here, the primary purpose of the NH is getting a
better understanding of embeddings and the mean-
ing of the relations in the NH must therefore not
be over-interpreted, because they explicitly have
to be left as unaltered as possible for making them
good representatives of the raw dataset. Specific
relations can often (see below) but not necessar-
ily be transferred into a semantic order, as can ex-
emplarily be seen in fig. 5a, where kinship rela-
tions are not organized as one would probably put
them. However, this is what the dataset looks like
in terms of geometrical neighborhood. If certain
words are positioned in a different way from what
could be expected, this does not mean that the
clustering went wrong, but rather that something
interesting happened in the embedding space.

5.3 Geometry of Clusters

The neighborhood relation gives a good view of
the relative positioning of the words, but the ge-
ometry of the clusters and their orientation in the
vector space is mostly veiled. Luckily, certain
statistics reveal that there is much regularity in the
shape of the clusters, so that the cluster alone con-
tains enough information for telling where a spe-
cific word is likely to be found.

For each pair of embedding vector v and the

34



ISECU.T

indexDow Jones Stoxx Ifo... ...

index indexes

index

composite index

Index

Composite IndexPrice Index

indexes indices

benchmark indices Indices Indexes 1s
tl

ev
el

2n
d

le
ve

l
3r

d
le

ve
l

Figure 6: Example of relations between clusters on the three lowest levels of the hierarchy. The dashed
boxes frame clusters. Note that only an excerpt of the (much larger) cluster on the third level is shown.
Lines ending in a circle indicate the connection between macro vertices and their clusters.

respective nearest neighbor w, the radiality R ∈
[−1, 1] of this nearest neighbor relation can be de-
fined as the normalized scalar product between v
and the difference vector between w and v via

R :=
v · (w − v)
|v||w − v| . (4)

Positive values of R mean, that w lies farther away
from the origin than v, while negative values im-
ply the opposite. In fig. 7, the probability density
for finding a certain value for R is shown. It can be
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Figure 7: Radiality R, as defined in (4).

concluded that for the data at hand, the neighbor-
hood relation on all levels strongly tends to point
“inward”, i.e. towards the origin of the embedding
space. In other words, it is almost certain, that the
nearest neighbor of a word vector lies closer to the
origin of the coordinate system than the word vec-
tor itself. On this basis and as the clusters are ba-
sically trees that grow away from the cluster root,
it can be expected that the cluster roots typically
lie near to the origin, compared to the other ver-
tices in the respective cluster. This can be checked
by plotting the probability density for finding a

cluster with a given percentage of vertices that are
farther away from the origin than the cluster root
(Figure 8). As expected, in most clusters the ma-
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Figure 8: Probability density for finding clusters
where the given percentage of vertices lie farther
away from the origin than the cluster root.

jority of vertices tends to lie farther outside than
the cluster root. Nevertheless, the probability den-
sity shows little bumps around fractions of small
integers like 1

3 , 1
2 , or 2

3 . These are mostly due to
small clusters, for which the position of the cluster
root within the cluster seems to be less predictable.
However, these clusters contain only a small frac-
tion of all words and their structure is easy to
understand anyway. If only relatively large clus-
ters are taken into account, the probability density
peaks much more strongly around the value 1.

Taking all this into account, and even though
there is no notion of geometry in the NNG, the
meaning of clusters like those in fig. 5 becomes
much more transparent: The root is very likely the
closest vertex to the origin and the other vertices
are successively farther outside. For example,
the representation vectors of the words “falling”,
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“Falling”, “Plummeting”, and “Plunging” have an
increasing L2-norm or distance from the origin
and they form a chain in the graph in fig. 5b. Only
a bit additional information about the position of
the root is thus sufficient for getting an idea of the
position and orientation of the whole cluster.

6 Evaluation

The focus of this paper is on the analysis of em-
beddings. Nevertheless, as already mentioned
above, the findings presented in the previous sec-
tions indicate that the NH might be used for NLP
tasks beyond visualization of word embeddings or
other large high-dimensional datasets, because the
neighborhood and macro vertex relations appear
to be connected to semantical relations between
the words, particularly on the lower levels. Pos-
sible tasks that directly come to mind are mea-
suring relatedness or similarity, various kinds of
tagging, and classification. In contrast to typi-
cal semantical frameworks like WordNet (Miller,
1995) or FrameNet (Baker et al., 1998) whose
creation requires extensive human resources, the
NH can be created without expert knowledge in a
very short time and has the capability of including
much more words.

Zesch and Gurevych (2007) analyze graphs ex-
tracted from Wikipedia3 and summarize a variety
of methods for evaluating semantical relations. In
this spirit and for a first and quick quantitative
view at the NH, similarity between neighbors in
the graph and between words and their macro ver-
tex are tested by calculating the respective Wu-
Palmer similarity scores (Wu and Palmer, 1994)
on WordNet (Miller, 1995). Other scores basi-
cally lead to similar results and are thus not dis-
cussed in more detail. Because the number of
words in WordNet is much smaller than that in the
dataset under consideration, the analysis is limited
to those words that can be found in both datasets,
which amounts to 54,586 words. For that to be
possible, a NH of these words alone is used, which
is distinct from the full hierarchy discussed above.
The usefulness of these results for a much smaller
dataset can be justified by envisioning that the
sparser NNG must roughly be a skeleton of the
full graph for geometrical reasons and must thus
be related to the latter. Besides that, quantifying
similarity on the smaller graph is interesting in its
own right.

3http://www.wikipedia.org

The results for the first four levels of the NH
are shown in fig. 9. Intuitively, the semantic rela-
tions between neighbors or words and macro ver-
tices are expected to be stronger, if more “proba-
bility mass” can be found on the right side of the
plot, because then more relations correspond to a
higher similarity. In order to clarify the meaning
of the curves, a baseline curve is added that corre-
sponds to an equivalent evaluation of random word
pairs.

Both the neighborhood relation and the macro
vertex assignment yield noticeably better results
than the baseline. In accordance with earlier re-
marks, the curves confirm that the semantical sig-
nificance of the hierarchy is much higher on the
lower levels. While the first and the second level
appear to exhibit a large amount of meaningful re-
lations, the higher levels are not much better than
the baseline.
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Figure 9: Evaluation of similarity. The curves
represent the probability density of finding a cer-
tain Wu-Palmer similarity between the respective
words. The baseline peaks at (0,6.8) but is cut off
for clarity of the other curves.

7 Conclusion and Outlook

In this paper we have presented a general graph-
based method for the analysis of embedding
spaces. At the heart lies a neighborhood hier-
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archy (NH), a parameter free, flexible and gen-
eral concept for clustering data in arbitrary spaces,
which eliminates the problem of interpreting high-
dimensional vectors while preserving the most im-
portant geometric information. In order to get a
better understanding of the data, a variety of sta-
tistical properties of word embeddings has been
evaluated. First evidence of the semantic signifi-
cance of the NH has been established by relating
it to WordNet data.

This method of analysis will allow researchers
to interactively explore the neighborhood relations
in an embedding space. This will enable them not
only to get a better intuition of the structure of em-
bedding spaces but will also give them new ideas
on how to incorporate embeddings in natural lan-
guage processing tasks like information extraction
or other tasks that require semantic knowledge.
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