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Abstract

Referential translation machines achieve
top performance in both bilingual and
monolingual settings without accessing
any task or domain specific information or
resource. RTMs achieve the 3rd system re-
sults for German to English sentence-level
prediction of translation quality and the
2nd system results according to root mean
squared error. In addition to the new fea-
tures about substring distances, punctua-
tion tokens, character n-grams, and align-
ment crossings, and additional learning
models, we average prediction scores from
different models using weights based on
their training performance for improved
results.

1 Introduction

Quality estimation task (QET) in WMT17 (Bo-
jar et al., 2017) (QET17) is about prediction of
the quality of machine translation output at the
sentence- (Task 1), word- (Task 2), and phrase-
level (Task 3) in IT and pharmaceutical domains
without using reference translations. Prediction of
translation performance can help in estimating the
effort required for correcting the translations dur-
ing post-editing by human translators if needed.
RTMs are capable to model different domains and
tasks while achieving top performance in both
monolingual (Biçici and Way, 2015) and bilingual
settings (Biçici, 2016b). We develop RTM mod-
els for all of the three subtasks of QET17, which
include English to German (en-de), and German
to English (de-en) translation directions. Task 1
is about predicting HTER (human-targeted trans-
lation edit rate) scores (Snover et al., 2006), Task 2
is about binary classification of word-level quality,

Figure 1: RTM depiction: ParFDA selects inter-
pretants close to the training and test data using
parallel corpus in bilingual settings and mono-
lingual corpus in the target language or just the
monolingual target corpus in monolingual set-
tings; an MTPPS use interpretants and training
data to generate training features and another use
interpretants and test data to generate test features
in the same feature space; learning and prediction
takes place taking these features as input.

and Task 3 is about binary classification of phrase-
level quality.

2 Referential Translation Machines

Referential translation machine (RTM) models are
predict data translation between the instances in
the training set and the test set. RTMs use inter-
pretants, data close to the task instances, to de-
rive features measuring the closeness of the test
sentences to the training data, the difficulty of
translating them, and to identify translation acts
between any two data sets for building predic-
tion models. RTMs are applicable in different
domains and tasks and in both monolingual and
bilingual settings. Figure 1 depicts RTMs and
explains the model building process. RTMs use
ParFDA (Biçici, 2016a) for instance selection and
machine translation performance prediction sys-
tem (MTPPS) (Biçici and Way, 2015) for generat-

540



Task Model DeltaAvg rP rS RMSE MAE RAE MAER MRAER Rank

Task 1
en-de

MIX 4 8.64 0.4544 0.4768 0.1707 0.1296 0.8483 0.7594 0.7962 9
PLS GBR 8.22 0.4302 0.4518 0.1727 0.1311 0.8586 0.7769 0.8099 10

de-en
MIX 4 8.94 0.6004 0.5704 0.1566 0.1085 0.7034 0.7201 0.6921 4
TREE 9.18 0.5845 0.5729 0.158 0.1186 0.7685 0.9013 0.7627 5

Table 1: Task 1 test results of the top 2 individual RTM models. RTM becomes the 2nd system accord-
ing to RMSE and 3rd system in de-en and 6th system in en-de. rP is Pearson’s correlation and rS is
Spearman’s correlation.

RTM Interpretants
Task Train Test Training LM
Task 1, 2, 3 (en-de) 24000 2000 1.1M 17.6M
Task 1, 2, 3 (de-en) 26000 2000 1.1M 17.6M

Table 2: Number of instances used as interpretants
by the RTM models.

ing features where the total number of features be-
comes 514, increasing depending on the order of
n-grams used and we used up to 5-grams for trans-
lation features and 7-grams for language model
(LM) at QET17.

We use ridge regression (RR), k-nearest
neighors (KNN), support vector regression (SVR),
AdaBoost (Freund and Schapire, 1997), and ex-
tremely randomized trees (TREE) (Geurts et al.,
2006) as learning models in combination with fea-
ture selection (FS) (Guyon et al., 2002) and partial
least squares (PLS) (Wold et al., 1984). We use
scikit-learn 1 for most of these models. The
following parameters are optimized: λ for RR, k
for KNN, γ, C, and ε for SVR, minimum number
of samples for leaf nodes and for splitting an in-
ternal node for TREE, the number of features for
FS, and the number of dimensions for PLS. For
AdaBoost, we do not optimize but use exponential
loss and 500 estimators like we use also with the
TREE model. We use grid search for SVR. Evalu-
ation metrics we use are Pearson’s correlation (r),
mean absolute error (MAE), relative absolute er-
ror (RAE), MAER (mean absolute error relative),
and MRAER (mean relative absolute error rela-
tive) (Biçici and Way, 2015). DeltaAvg (Callison-
Burch et al., 2012) calculates the average quality
difference between the top n− 1 quartiles and the
overall quality for the test set. Official evaluation
metrics include r, MAE, and DeltaAvg.

We improved RTM models (Biçici, 2016b) with
additional features:

• normalized Levenshtein distance between the
1http://scikit-learn.org/

source sentence and its translation and their
longest common prefix, suffix, and sub-
string (Tian et al., 2017) normalized by the
minimum length of the compared sentences.

• number of tokens about punctuation in the
source sentence and the translation (Kozlova
et al., 2016) and the cosine between them.

• modified CHRF3 (Popović, 2015) to com-
pute character n-grams split by word bound-
ary space with n ∈ [3, 7] whereas the
F1 (Biçici, 2011) we already use compute
with word n-grams up to n = 5.

• proportion of alignments that cross (

≮

) the
link (Sagemo and Stymne, 2016) of any other
alignments:

√
0.5× |a ≮

A|
|A| (1)

• word alignment correspondence fea-
tures (Sagemo and Stymne, 2016).

• additional learning models including KNN,
AdaBoost, and gradient boosting regressor
(GBR) (Tian et al., 2017; Hastie et al., 2009).

We also use prediction averaging (Biçici, 2017),
where the performance on the training set is used
to obtain weighted average of the top k predic-
tions, ŷ with evaluation metrics indexed by j ∈ J :

ŷ̂ŷyµk = 1
k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1
1

wj,i

∑k
i=1

1
wj,i

ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |

∑
j∈J ŷ̂ŷyj,wj

k
MIX

(2)
MAER is used to select the predictions and
weights are inverted to decrease error.

We use Global Linear Models (GLM) (Collins,
2002) with dynamic learning (GLMd) (Biçici,
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Model splits % error weights

2017

word
en-de

GLMd 4 0.0773

[0.5, 2]

GLMd 5 0.0668

de-en
GLMd 4 0.0468
GLMd 5 0.0469

phrase
en-de

GLMd 4 0.0068
GLMd 5 0.0059

de-en
GLMd 4 0.0129
GLMd 5 0.0125

2016
word en-de

GLMd 4 0.0688
GLMd 5 0.0757

phrase en-de
GLMd 4 0.0051
GLMd 5 0.0051

Table 3: RTM Task 2 training results where GLMd
parallelized over 4 splits is referred as GLMd s4
and GLMd with 5 splits as GLMd s5.

Model F1 BAD F1 OK wF1

Word
en-de

GLMd s4 0.318 0.8844 0.2813
GLMd s5 0.36 0.8778 0.3158

de-en
GLMd s4 0.3363 0.9386 0.3157
GLMd s5 0.3381 0.9395 0.3176

Phrase en-de
GLMd s4 0.4043 0.8079 0.3283
GLMd s5 0.4114 0.8079 0.3323

de-en
GLMd s4 0.2472 0.9073 0.2242
GLMd s5 0.3598 0.8884 0.3197

Table 4: RTM Task 2 results on the test set after
the challenge. wF1 is average weighted F1 score.

2016b) for word- and phrase-level translation per-
formance prediction. GLMd uses weights in a
range [a, b] to update the learning rate dynamically
according to the error rate.

3 Results

Table 2 lists the number of sentences in the train-
ing and test sets for each task and the number of
instances used as interpretants in the RTM mod-
els (M for million). We tokenize and truecase
all of the corpora using Moses’s (Koehn et al.,
2007) processing tools. 2 LMs are built using
KENLM (Heafield et al., 2013).

3.1 QET 2017 Results

The results on the Task 1 test set are listed in Ta-
ble 1. 3 For Task 2 and Task 3, we list the results

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

3We calculate rS using scipy.stats.

we obtain after the challenge for coherent presen-
tation on the training sets in Table 3 and on the test
set in Table 4. The results we obtained in the chal-
lenge are similar. Ranks for Task 1 are out of 14
submissions and 9 systems. Top RTM models that
competed in Task 1 were MIX 4, which combines
top 4 predictions, PLS GBR, and TREE. RTM be-
comes the 2nd system according to RMSE and 3rd
system in de-en and 6th system in en-de.

3.2 Recomputing QET 2016 Results

QET17 also compares results on QET16 test sets.
QET16 test set domain was different than the do-
main of QET17, overlapping on the IT domain.
We use the RTM models built for QET17 to obtain
results on the QET16 test sets, which is catego-
rized as transductive transfer learning. 4 Transfer
learning attempt to re-use and transfer knowledge
from models developed in different domains or
for different tasks such as using models developed
for handwritten digit recognition for handwritten
character recognition (Guyon et al., 2012). The
results are in Table 5 for Task 1, which does not
show improvement, and in Table 7, which show
improvements with RTM models built for QET17.

3.3 Comparison with Previous Results

We compare the difficulty of tasks according to
MRAER levels achieved. In Table 6, we list the
RTM test results when predicting sentence-level
HTER in 2013–2017. Compared with QET16, we
observe improvements in MRAER and both MAE
and RAE are improved when QET17 is compared
with others.

4 Conclusion

Referential translation machines achieve top per-
formance in automatic, accurate, and language in-
dependent prediction of translation performance
and achieve to become the 2nd system according
to RMSE when predicting the translation perfor-
mance from German to English. RTMs pioneer
a language independent approach for predicting
translation performance and remove the need to
access any task or domain specific information or
resource.

4www.youtube.com/watch?v=9ChVn3xVNDI;
we use the RTM models for the same task in different
domains.
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Model DeltaAvg r MAE RMSE RAE MAER MRAER

2017
ST TREE 5.14 0.2052 0.1456 0.1875 0.9634 0.8844 0.8666
PLS GBR 3.71 0.1875 0.1474 0.1914 0.9755 0.8706 0.8966

2016
SVR 6.38 0.3581 0.1359 0.1806 0.8992 0.7509 0.8567
FS SVR 6.66 0.3764 0.1346 0.1781 0.8905 0.7537 0.8388

Table 5: QET16 Task 1 results are not improved with QET17 Task 1 RTM models.

Task Translation Model r MAE RAE MAER MRAER

QET17 Task 1 HTER
en-de MIX 4 0.4544 0.1296 0.8483 0.7594 0.7962
de-en MIX 4 0.6004 0.1085 0.7034 0.7201 0.6921

QET16 Task 1 HTER en-de FS SVR 0.3764 0.1346 0.8905 0.7537 0.8388
QET15 Task 1 HTER en-es FS+PLS SVR 0.349 0.1335 0.903 0.8284 0.8353
QET14 Task 1.2 HTER en-es SVR 0.5499 0.134 0.8532 0.7727 0.8758
QET13 Task 1.1 HTER en-es PLS-SVR 0.5596 0.1326 0.8849 2.3738 1.6428

Table 6: Test performance of the top RTM results when predicting sentence-level HTER in 2013–2017.

Model wF1 F1 OK F1 BAD

20
17

Word
GLMd s4 0.2857 0.8775 0.3256
GLMd s5 0.3053 0.8653 0.3528

Phrase
GLMd s4 0.3421 0.8192 0.4176
GLMd s5 0.3504 0.817 0.4289

20
16

Word
GLMd s4 0.2725 0.8884 0.3068
GLMd s5 0.3081 0.8820 0.3494

Phrase
GLMd s4 0.3070 0.8145 0.3770
GLMd s5 0.3274 0.8016 0.4084

Table 7: QET16 Task 2 and Task 2p results show
improvement.
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