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Abstract

The demand for more sophisticated human-computer interactions is rapidly increasing, as users
become more accustomed to conversation-like interactions with their devices. In this paper, we ex-
amine this changing landscape in the context of human-machine interaction in a shared workspace to
achieve a common goal. In our prototype system, people and avatars cooperate to build blocks world
structures through the interaction of language, gesture, vision, and action. This provides a platform
to study computational issues involved in multimodal communication. In order to establish elements
of the common ground in discourse between speakers, we have created an embodied 3D simula-
tion, enabling both the generation and interpretation of multiple modalities, including: language,
gesture, and the visualization of objects moving and agents acting in their environment. The simu-
lation is built on the modeling language VoxML, that encodes objects with rich semantic typing and
action affordances, and actions themselves as multimodal programs, enabling contextually salient
inferences and decisions in the environment. We illustrate this with a walk-through of multimodal
communication in a shared task.

1 Introduction

In this paper, we discuss a developing approach towards modeling peer-to-peer communication using
multiple modalities, e.g., language, gesture, vision, and action. This platform integrates a multimodal
model of semantics (Multimodal Semantic Simulations, MSS) (Pustejovsky and Krishnaswamy, 2016;
Krishnaswamy et al., 2017) with a realtime vision system for recognizing human gestures (Wang et al.,
2017). This framework assumes both a richer formal model of events and their participants, as well
as a modeling language for constructing 3D visualizations of objects and events denoted by linguistic
expressions. We position this approach in the context of the questions posed by the workshop organizers,
and provide more detail into the architecture that integrates the multiple sources of knowledge within the
shared context of communication.

To begin with, let us distinguish between experience and action: two individuals who share an experi-
ence, such as witnessing a natural event, hearing a clap of thunder, or feeling the earth tremor, are jointly
“co-perceiving an event”. Hence, they are co-situated and co-perceptive. If these two beings are com-
municating in order to carry out a shared task, such as building a structure, moving objects, or clearing
a space, then they can be considered “agents”, who are not only co-perceiving the present situation and
subsequent situations as they change, but are also acting, together or individually, as a result of commu-
nicative interactions. Hence, what is being shared in the latter is considerably richer and more complex in
character. Namely, there is agreement, acceptance, or recognition of a common goal between the agents,
what can be called “co-intent”. These combined factors constitute the first aspects of is called “common
ground”: namely, co-situatedness, co-perception, and co-intent. The theory of common ground has a rich
and diverse literature concerning what is shared or presupposed in human communication (Clark et al.,
1991; Gilbert, 1992; Stalnaker, 2002; Asher, 1998; Tomasello and Carpenter, 2007).



When engaged in accomplishing a task jointly, agents share one additional anchoring strategy that
greatly enhances the expressiveness of common ground: namely, the ability to “co-attend”. Because of
the inherently directed nature of attention and co-attention, we will, rather, speak of a “shared situated
reference” in the discussion that follows. This ability will emerge as central to determining the denota-
tions of participants in shared events. Events as we experience them are distinct from the way we refer to
them with language. The mechanisms in language allow us to package, quantify, measure, and order our
experiences, creating rich conceptual reifications and semantic differentiations. The surface realization
of this ability is mostly manifest through our linguistic utterances, but is also witnessed through gestures.
By examining the nature of the common ground assumed in communication, we can study the conceptual
expressiveness of these systems (Pustejovsky, 2018).

We believe that simulation can play a crucial role in human-computer communication; it creates a
shared epistemic model of the environment inhabited by a human and an artificial agent, and demon-
strates the knowledge held by the agent publicly. Demonstrating knowledge is needed to ensure a shared
understanding with the humans involved in the activity, but why create a simulation model, if the goal
is to interact with an avatar or robot? If a robotic agent is able to receive linguistic information from a
human commander or collaborator and interpret that relative to its current physical circumstances, it can
create an epistemic representation of that same information. However, without a modality to express that
representation independently, the human is unable to verify or query what the robotic agent is perceiving
or how that perception is being interpreted. In a simulation environment the human and robot share an
epistemic space, and any modality of communication that can be expressed within that space (e.g., lin-
guistic, visual, gestural) enriches the number of ways that a human and a robotic agent can communicate
within object and situation-based tasks, such as those investigated by Hsiao et al. (2008), Dzifcak et al.
(2009), Cangelosi (2010).

The simulation environment provided by our model includes the perceptual domain of objects, prop-
erties, and events. In addition, propositional content in the model is accessible to the discourse, allowing
access to beliefs, desires, and intentions (BDI), and for them to be distinguished by the agents to act
and communicate appropriately. This provides the non-linguistic visual and action modalities, which are
augmented by the inherently non-linguistic gestural modality enacted within the visual context.

As gesture is intended for visual interpretation, it is directly interpretable in the co-visual context if
and only if the denotation of its interpretation function is directly available in the simulation through vi-
sual inspection (Lascarides and Stone (2006, 2009); Clair et al. (2010); Matuszek et al. (2014)). Direction
or vector information encoded in a gesture hooks into direct deixis and satisfiable actions by projecting
the gesture onto a distinct area of the simulation environment. For entity descriptions, speech allows
for a randomly accessible and indexable descriptions, while gesture allows for physically and spatially
grounded regions, objects, or configurations. Speech can express nominal, qualitative, tangible, or non-
tangible attributes, while gesture is limited to orientation and direction, shape, size, relative distance, and
manner of motion. For communicative events, where speech allows for any mood (declarative, interrog-
ative, imperative), gesture is usually imperative, except for speech acts. Speech allows for an essentially
unconstrained expression of propositional content, while gesture is limited to the propositional content
of a speech act, and the content of a deixis or action description.

For explicit spatial grounding, gesture is computationally advantageous as spatially-encoded infor-
mation in the gesture (e.g., direction, vector, etc.) can be directly grounded in the scene without having
to process an additional linguistic layer of indirection. In some cases, spatially-denoting manner is easier
to model with gesture than language. This is also the case with technology-driven multimodal display in-
terfaces (Johnston, 2009), but here we are concerned with a co-situated situation where the interlocutors,
human and virtual, share an epistemic space.

We assume interlocutors have explicit and distinct modes of interpretation as accessed through per-
ception. Input from the environment (our embedding space) evidences various beliefs that we establish
as knowledge. Our model of synthetic vision provides distinct but mutually coherent views on the shared
environment. An example involving object occlusion is discussed in Section 3.

Any of the different modalities in our model can be used to disambiguate new information introduced



into the context by the other participant(s) by enumerating possible options, pruning question/answer
steps based on the number of options, and interaction between interlocutors until an unambiguous inter-
pretation is achieved. Examples of this are discussed in Section 4.

2 Multimodal Communication

2.1 Language

Our system uses VoxSim, an open-source language-driven event simulator (Krishnaswamy and Puste-
jovsky, 2016a,b) to operationalize events in real time, mapping from natural language input using a
dynamic semantics and the modeling language VoxML (Pustejovsky and Krishnaswamy, 2016). VoxML
semantic typing extends that provided within Generative Lexicon Theory (Pustejovsky, 1995), as well
as the approach taken in Asher (2011), to enable a semantics of embodiment (Pustejovsky, 2013; Puste-
jovsky and Krishnaswamy, 2014). Embodiment, a requirement on and facilitated by the shared virtual
environment, allows us to operationalize gestures as programs enacted within the 3D environment with
a direct mapping to linguistic description. This enactment is performed by a virtual avatar, in the vein of
prior work studying human-computer communication (Kopp et al., 2003; Sowa and Kopp, 2003; Kopp
et al., 2005; Krämer et al., 2007; Weitnauer et al., 2008).

2.2 Gesture

Gestures and actions are the primary modes of communication between a person and an avatar in our
system. The human user stands at one end of a table, facing a monitor at the other end showing a virtual
continuation of the table, and the avatar. The user’s motions are captured using a Microsoft Kinect v2
RGBD sensor. Gestures are detected in real time using in-house gesture recognition software (in press)
and sent to the avatar via VoxSim. The avatar’s gestures are displayed to the human on the monitor.

The real-time gesture detection system can recognize 34 hand poses trained from a publicly available
dataset of naturally occurring gestures between human subjects working on blocks world tasks (Wang
et al., 2017). It can also detect head nods, head shakes, stepping up to or back from the table, as well as
the directions of arm motions. Other body poses not classified by the recognizer as one or the above are
labeled “other,” and not considered to be semantic gestures in this context.

Our prototype scenarios restrict the gestural lexicon to only eight gestural voxemes (visual lexemes),
four of which pertain to actions and four to the state of discourse. The action-based gestural voxemes
are: point (i.e., deixis), either at a block or open space; grab, the user mimicking grabbing a block; carry,
mimicking moving a block they have grabbed; and push. Point, carry and push include directionality
(e.g., “left” or “away”). The dialogue-based voxemes are: engage and disengage, to begin and end a
dialogue; and positive and negative acknowledge, to signal agreement or disagreement.

Gestural voxemes, as we use the term here, are more general than physical gestures. For example,
users can signal positive acknowledgement by nodding their heads or by giving a “thumbs up” sign with
either or both hands. There are therefore seven different motions to signify positive acknowledgement
(including combinations of nodding and thumbs up with either or both hands). Each voxeme therefore
corresponds to a set of synonym gestures, often including but not limited to enantiomorphs. As the
semantics of gesture are often culturally and situationally conditioned (Müller, 2004), we should note
that the gesture set used here comes from a dataset elicited from United States university students (i.e.,
WEIRD (Henrich et al., 2010)), and used in a context designed to achieve a particular construction
goal, and that should be taken into account and considering their descriptive properties, creation, and
enactment (Streeck, 2008, 2009).

2.3 Synthetic Vision

In the context of peer-to-peer communication, we are concerned not only with co-belief associated with
presupposed and shared communal knowledge (Grosz and Sidner, 1990; Cohen et al., 1990; Asher and
Lascarides, 2008; Lascarides and Asher, 2009), but also that knowledge arising through the shared ex-
periences of co-situated (but distinct) perceptions. For this (and other) reasons, perception reports have



often been modeled modally as a conventional epistemic operator (Shoham and Del Val, 1991), yet while
this is a formal convenience it is not cognitively or computationally realistic (Musto and Konolige, 1993;
Bell and Huang, 1998). This has been a gap in approaches to perception through modal logic, reducing
the act of perception to a extramission theory of vision. Alternatively, while computational approaches
to vision explicitly operationalize the recognition of features and objects, this is far from our goal of
extracting epistemic relations from a scene. Some formal approaches have moved beyond these views,
by acknowledging the role of sensory capture as distinct from the propositional content that results from
this act (Wooldridge and Lomuscio, 1999), as well as (Schwarzentruber, 2010, 2011). We share this
view, but aim to go further, by embedding the modal interpretation of the knowledge associated with
perception as the result of a signal transmission from sensory data in the environment.

To this end, we adopt the strategies and modeling techniques of synthetic vision (Noser et al., 1995;
Peters and O’Sullivan, 2002) combined with work in dynamic epistemic logic (Goranko and Otto, 2007;
Plaza, 2007; Van Benthem, 2011). We distinguish between egocentric (viewer-based) and allocentric
(externally-based) perspectives. Within a 3D environment, the problem of visibility is introduced because
objects may be occluded from the frame of reference of the viewer. Further, because of distinct egocentric
frames of reference (FoR) for each interlocutor in a co-situated, co-perceptual task, we need to track the
interpretations (valuations) of qualitative spatial relations that rely on FoR, such as in front of, to the left,
behind, etc. (Zimmermann and Freksa, 1996; Ligozat, 1993).

We implement an evidential-based model of perception, where knowledge is arrived at or “evidenced
through” inferences over properties and relations from sensory input, with which we define Saφ (agent
a sees that φ). Synthetic vision, Saφ, for a computational agent within VoxSim is defined, in part, as
a relation of Evidences (E), given informally as follows: ψEaφ states that a sensory input relation, ψ,
provides enough evidence for agent a to know that φ. The set of evidencing propositions includes the
following object attribute classes: color, shape, size, and orientation. For two or more objects, the
qualitative spatial relations from RCC8 and RCC-3D (Randell et al., 1992; Albath et al., 2010) are used,
along with orientational (directional) relations.

2.4 Action

At any point in the human-avatar interaction where the avatar’s internal logic has extracted a meaning
from the linguistic or gestural input, the avatar then communicates this understanding to the human by
performing the associated action, such as pushing a block adjacent to another block, putting a block on
top of another block, or moving a block into a specified region of the table.

Action can demonstrate clear, unambiguous understanding, such as moving a distinct block to a
definite location, or can be a request for more meaning, as when the avatar can gesture toward a block it
thinks might have been indicated by the human, in order to request confirmation.

Action therefore communicates the avatar’s understanding of the current situational context, provid-
ing an epistemic basis that each party can perform inference over to bring their understanding of the
other’s vision of the external world into line.

3 Example Scenario and Walk-through

Figure 1 illustrates the same configuration of blocks as seen from the perspectives of the human and
avatar. From the avatar’s point of view (POV), the green block is occluded by the larger red block.

Figure 1: L: Human’s view of scene; C: Avatar’s view of blocks, table; R: Avatar’s view of human



Using this configuration, an example scenario follows as depicted in Figure 2, with individual inter-
actions indicated by the labeled frames which show the human’s action in the left half of the frame and
the avatar’s action on the right.

When the human begins by pointing to his left (Frame A), this is interpreted unambiguously as
indicating the red block, as the avatar cannot see the green one.

The human moves his left hand, palm open, from his left to his right, indicating “push to right”
(Frame B). Here, the avatar enters a disambiguation loop, a state machine of which is shown in Figure 3.
Using both text and audio output in natural language, the avatar requests a clarification: Does the human
intend her to push the indicated (red) block adjacent to the (blue) block on the right side of the table?
This is confirmed by a thumbs-up gesture from the human, and the avatar moves the red block to the left
side of the blue block (Frame C).

This action has an effect unintended by the avatar: moving the red block has exposed the green one,
the existence of which was previously unknown to the avatar. Before this point, the human and avatar
are co-situated in and co-perceptive of the scene, but their respective visions of the external world do
not cohere due to their differing beliefs regarding the existence of the green block. Now, when the green
block is revealed to the avatar, they have the same beliefs about the three blocks in the scene, and the
avatar must update her internal model of the scene to include the existence of the green block. The prior
existence of the green block to this point is also included in the update axiomatically. Having global
knowledge of the scene, we can see that the two agents’ models of the world are now coherent, through
an update facilitated by multimodal interaction.

Now that knowledge of the existence and location of the green block is common to both parties,
when the human indicates (his) left side of the table, the avatar can unambiguously understand this to
mean that the green block is indicated (Frame D). By then gesturing grab (hand in a clawlike position, as
shown in Frame E), then moving his hand up, over to the red block, and down, the human can indicate to
the avatar that he wants her to pick up the green block and move it either on top of the red block, or into
the same region of the table, an ambiguity that the avatar can resolve though some questions, answered
and acknowledged by the human. The result is a four-step staircase made of three blocks (Frame F).

Figure 2: Example staircase construction scenario

Our model of communication allows for multiple parameters to be altered in order to make changes
to the nature of the interaction. For example, the avatar can behave more proactively or less when
disambiguating gestures, which can affect the action taken. Examples of this are discussed in Section 4.

4 Implications for Human-Computer Communication

Co-situatedness and co-perception of the participants give rise to some interesting considerations in their
interaction. When, in the example from Section 3, the avatar begins moving the red block and reveals
the green block, she might pause her move before completion and clarify that moving the red block
was actually what the human intended; the introduction of the green block into her present model of the
world causes her to update her past model, as discussed in Section 3, and the propagation of that dynamic
epistemic model to the present creates a choice-point where none existed before.
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Figure 3: Finite state machine for dialogue management

Alternately, when the avatar reaches for or starts moving the red block before the green block is
revealed, the human might interrupt with a “stop” gesture or utterance, indicating that the avatar is doing
something divergent from the human’s plans. Evidenced by the positions of the blocks and the actions
being taken with them, the avatar can infer that the indicated block is not the one she is supposed to be
affecting; since no other blocks are visible in the originally-indicated region of the table, this introduces
the possibility that there exists another block to be manipulated. The avatar’s model of the scenario
changes from a two-block model � r, b at t0 to a three-block model � r, g, b at tn, where new information
is introduced either by evidencing or inference in a logic of synthetic vision. This way we can represent
psychological phenomena like object permanence in a simulation environment as changes in the entropy
of the information available to the virtual agent through its (synthetic) vision of the scene.

5 Conclusion

Multimodal peer-to-peer interfaces require robust integration of conversational modalities in a naturalis-
tic fashion. Here we outline the first steps toward such integration, based on the logic of a multimodal
simulation semantics and 3D environment as the platform for shared common ground. We provide our
computational agent with a framework for some of the faculties natively available to humans using so-
phisticated computer vision techniques to recognize gesture and by laying the groundwork for a modal
logic of synthetic vision. The result is a framework and platform that interweaves linguistic and non-
linguistic modalities to facilitate the completion of a shared task by exploiting the relative strengths of
linguistic and non-linguistic context to exchange information in a situated communication.
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