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Abstract

Patterns stored within pre-trained deep neural networks compose large and powerful descriptive
languages that can be used for many different purposes. Typically, deep network representations are
implemented within vector embedding spaces, which enables the use of traditional machine learning
algorithms on top of them. In this short paper we propose the construction of a graph embedding
space instead, introducing a methodology to transform the knowledge coded within a deep convolu-
tional network into a topological space (i.e., a network). We outline how such graph can hold data
instances, data features, relations between instances and features, and relations among features. Fi-
nally, we introduce some preliminary experiments to illustrate how the resultant graph embedding
space can be exploited through graph analytics algorithms.

1 Introduction

Deep learning models build large and rich data representations by finding complex patterns within large
and high-dimensional datasets. At the end of a deep learning training procedure, the learnt model can
be understood as a data representation language, where the pattern learnt by each neuron within the
deep model represents a word of such language. Extracting and reusing the patterns learnt by a deep
neural network (DNN) is a subfield of deep learning known as transfer learning. Transfer learning from
a pre-trained DNN can be used to initialize the training of a second DNN from a non-random state,
improving performance over randomly initialized networks [22, 2, 10], and also enabling the training
of DNNs for domains with limited amount of data [8, 20]. These two settings, where the purpose of
the transfer learning process is to train a second DNN, are cases of transfer learning for fine tuning.
A different purpose of transfer learning is to extract deep representations so that alternative machine
learning methods can be run on top of those. This is commonly known as transfer learning for feature
extraction, and is the main topic of this paper.

Extracted DNN representations are typically implemented through vectors, where the length of the
vector equals to the number of neural features being used. These vector embedding spaces have been
used to feed classifiers based on the instance-attribute paradigm (e.g., Support Vector Machines) [1, 7].
Instead, in this paper we propose a graph based representation of those same embeddings spaces, with



the goal of running a different family of algorithms; those based on the instance-instance paradigm, such
as community detection algorithms. Graph or network based algorithms focus on the associations among
instances to find topologically coherent patterns. These are significantly different from the patterns that
can be found using algorithms focused on the associations among instances and attributes. This paper
describes a methodology for building a graph representation of neural network embeddings (in §2), and
reports the performance of a community detection algorithm processing the resultant graph (in §3).

2 Graph Representation of Vector Embeddings

Vector embeddings are often built by capturing the output of a single layer close to the output of a
deep convolutional neural network (CNN), typically a fully-connected layer [18, 9, 5, 11, 16]. However,
earlier layers can also be useful for characterizing data, particularly when this data is not strongly related
with the data that was used for pre-training the model [1]. Another difference between later layers and
the rest in a typical CNN trained for classification is that layers close to the output exhibit a strongly
discriminative behavior, activating sporadically and in a crisp manner (either strongly activating or not at
all). In contrast, neurons of layers further from the output show a more descriptive behavior, activating
frequently and in a fuzzy way [6].

In this paper we generate a graph representation which captures data properties in a topological
space (i.e., through vertices and their associations). Using a single layer embedding for that purpose
would result in a rather poor topology, as fully-connected layers represent but a portion of all patterns
learnt by the DNN, and only a small subset of neurons activate for each data instance. To guarantee that
the graph representation contains a topology rich enough as to empower network analysis algorithms we
use the full-network embedding [7], which produces a vector embedding including all convolutional and
fully-connected layers of a CNN. This results in a much larger embedding space (composed by tens of
thousands of dimensions), allowing us to generate larger and richer graphs.

Next we briefly introduce the full-network embedding, and at the end of this section we describe how
we generate a graph to capture the embedding space within its topology.

2.1 Full-network Embedding

The full-network embedding (FNE) generates a representation of an input data instance by capturing
the activations it produces at every convolutional and fully-connected layer within a CNN. In order
to integrate the features found at layers of different depth, size and nature, the FNE includes a set of
processing steps. An overview of these can be seen in Figure 1.

After the extraction of activations, the FNE applies a spatial average pooling on the activations com-
ing from convolutional layers. As a result, neurons of convolutional layers will generate a single value
in the embedding (as neurons from fully-connected layers do). After the spatial pooling, the FNE in-
cludes a feature standardization step. The goal of this transformation is to normalize the values of the
different neurons, so that each neuron has a coherent range of activations regardless of its type or loca-
tion within the CNN. Otherwise, the activations from the layers close to the output would dominate the
representation, as neurons from these layers typically activate with much more strength.

Finally, the FNE discretizes features, mapping all values to either -1, 0 or 1. This process reduces
noise and regularizes the embedding space. In the FNE, this discretization is done with a pair of constant
thresholds (−0.25, 0.15) which determine if a feature is relevant by presence (1 implies an abnormally
high activation) or is relevant by absence (-1 implies an abnormally low activation) for a given input data
instance [7]. In our experiments we set more demanding thresholds (−2.0, 2.0), to make sure that the
degree of sparsity of the graph is appropriate for network analysis methods.

2.2 Graph Representation

The FNE generates a vector representation of each data input, where feature values are either -1, 0 or 1.
Those values represent the relevance of a specific neural filter for a given data input, indicating feature



Figure 1: Overview of the Full-network embedding generation workflow.

relevance by absence, feature irrelevance, and feature relevance by presence, respectively. In this paper
we consider building a topology based representation (i.e., a graph) of such embedding, and processing
it through algorithms exploiting instance-instance relations (e.g., community detection) to exploit the
information encoded topologically.

2.2.1 Vertices

Let us start defining what composes the vertices (V) of our graph representation G. From the discrete
three-valued full-network embedding we extract both data instances (e.g., images of a dataset) and model
features (i.e., neural filters of the CNN). Each data instance is represented in the graph G as a unique
vertex (of type image vertex or Vi). Features however, may be relevant by presence or by absence. We
choose to capture this dichotomy by creating two vertices in the graph for each feature; one of those
vertices will represent the relevant activation of the feature (positive feature vertex or V +

f ), while the
other will represent the relevant lack of activation of the feature (negative feature vertex or V −

f ). As a
result, the number of image vertices in the graph (|Vi|) will be equal to the number of input data images,
while the number of positive and negative feature vertices (|V +

f | and |V −
f | separately) will be equal to

the number of features in the original vector embedding.

2.2.2 Image-Feature Edges

Let us now define the edges (E) of our graph representation G. The implementation of edges between
image vertices and feature vertices (Eif ) is straight-forward. We add an edge between a vertex image
vi and a positive feature vertex v+f when the corresponding value in the full-network embedding is 1.
Analogously, we add an edge between a vertex image vi and a negative feature vertex v−f when the
corresponding value in the full-network embedding is -1. Edges between image vertices and positive
feature vertices indicate that the occurrence of the feature is relevant for describing the image, while
edges between image vertices and negative feature vertices indicate that the no occurrence of the feature
is relevant for describing the image. Feature values of 0 identify irrelevancy, which is why these are not
coded into the graph.

2.2.3 Feature-Feature Edges

One of the benefits of using a graph-based representation for the embedding is that, unlike vector repre-
sentations, it allows us to extend the embedding space to include feature-feature relations. In the graph
this corresponds to the creation of edges between feature vertices (Eff ). To identify relations between
features we consider the weights (W) of the pre-trained CNN. If the weight associating a neuron fl+1

with a neuron from the previous layer fl (W(fl+1, fl)) is abnormally high in the context of all weights
of fl+1 with the previous layer (W(fl+1, Fl)), there exists a positive correlation between both neurons.



Similarly, ifW(fl+1, fl) is abnormally low in the context ofW(fl+1, Fl), there exists a negative corre-
lation between neurons fl+1 and fl. To identify what counts as abnormally high or abnormally low, we
compute the mean (µ) and the standard deviation (σ) of the weights that associate a feature fl+1 from
a given layer with every feature from the previous layer fi ∈ Fl (in the case of convolutional filters we
previously sum all the weights of the receptive field). If the weight associating fl+1 with one of the fea-
tures of the previous layer is above that mean a given number of standard deviations, then such relation
is abnormally high (see Equation 1). An abnormally low relation is defined analogously.

We implement positive correlations in the graph by adding an edge between the positive feature ver-
tex of fl and the positive feature vertex of fl+1 (eff (v+fl , v

+
fl+1

)), and another edge between the negative
feature vertex of fl and the negative feature vertex of fl+1 (eff (v−fl , v

−
fl+1

)). Negative correlations are
implemented by adding an edge between the positive feature vertex of fl and the negative feature vertex
of fl+1 (eff (v+fl , v

−
fl+1

)), and another edge between the negative feature vertex of fl and the positive
feature vertex of fl+1 (eff (v−fl , v

+
fl+1

)).

{eff (v+fl , v
+
fl+1

), eff (v
−
fl
, v−fl+1

)} ∈ Eff iff W(fl+1, fl) > µ(W(fl+1, Fl)) + σ(W(fl+1, Fl)) ∗ k
{eff (v+fl , v

−
fl+1

), eff (v
−
fl
, v+fl+1

)} ∈ Eff iff W(fl+1, fl) < µ(W(fl+1, Fl))− σ(W(fl+1, Fl)) ∗ k
(1)

The parameter k of Equation1 regulates the sparsity of feature-feature edges. A higher k value will
only accept edges between very strongly connected pairs of neurons, as the associated weights must be
a larger number of standard deviations above the mean. In all our experiments we set k to 1.5.

At this point we can finally define our graph representation as G = (V,E) where E = Eif ∪ Eff

and V = Vi ∪ V +
f ∪ V

−
f .

3 Experiments

To evaluate our graph representation of the deep embedding space we use the VGG16 CNN architecture
[21], pre-trained on the ImageNet [17] dataset. We process four different datasets through this pre-trained
model. Details on the datasets are shown in Table 1:

• The MIT Indoor Scene Recognition dataset [15] (mit67) consists of different indoor scenes to be
classified in 67 categories.

• The Oxford Flower dataset [12] (flowers102) is a fine-grained dataset consisting of 102 flower
categories.

• The Describable Textures Dataset [4] (textures) is a database of textures categorized according to
a list of 47 terms inspired from human perception.

• The Oulu Knots dataset [19] (wood) contains knot images from spruce wood, classified according
to Nordic Standards.

For each of the images of those datasets we obtain the full-network embedding. In the case of the
VGG16 architecture, the embedding generates vectors of 12,416 features. Based on those, we build the
graph representation, as previously described.

We explore the graph-representation by running a community detection algorithm on top of it. Partic-
ularly, we use the Fluid Communities (FluidC) algorithm [13]. We chose this algorithm because its based
on the efficient label propagation methodology while outperforming the traditional LPA algorithm, be-
cause it allows us to specify the number of clusters we wish to find, and because it can be easily adapted
to the specific needs of our experiments. These specific needs regard mostly cluster initialization and
maintainance. Since the graph is composed by both images and features vertices, but only images have
an associated label, clusters should be evaluated considering only the image vertices found in a final
community. For this same reason, we must ensure that all communities found contain at least one image



Table 1: Properties of all datasets computed

Dataset #Images #Classes #Images per class

mit67 6,700 67 100
flowers102 8,189 102 40 - 258

textures 5,640 47 120
wood 438 7 14 - 179

Table 2: Properties of the graphs built from the deep embedding spaces, and quality of the communities
found by the FluidC algorithm measured in NMI and AMI.

Dataset mit67 flowers102 textures wood

|V | 30,186 33,010 30,459 25,259
|E| 8,396,939 9,654,464 8,561,314 5,610,832

NMI 0.44 0.54 0.42 0.26
AMI 0.36 0.46 0.37 0.20

vertex. This is done by modifying the FluidC algorithm, forcing it to initialize communities on image
vertices, and by making sure that a community contains at least one image vertex at all times.

We measure the quality of the found clusters by measuring the similarity between the found com-
munities and the original dataset labels. We use both the normalized mutual information measure (NMI)
and the adjusted mutual information (AMI). The properties of the graph generated for each dataset and
the performance results are shown in Table 2.

All experiments were done using the VGG16 model pre-trained on ImageNet2012, freely available
online. The feature extraction process was done with Caffe. The execution of the graph algorithm was
done using NetworkX v2.0, which includes FluidC.

4 Related Work

The relation between graphs and deep neural networks have been previously explored, but most con-
tributions do so from a different perspective. While our proposal is to obtain a graph representation of
the embedding produced by a CNN when processing an image, most related work focuses on training
DNNs for processing graph data. For example, DeepWalk [14] uses random walks in a graph (e.g., Flickr
or YouTube networks) to feed a SkipGram model, and then evaluate community detection methods on
those graphs. Similarly to DeepWalk, the work of Cao et al. [3] also processes graphs as input, but it
uses a probabilistic approach on weighted graphs to feed an autoencoder. In contrast, we are performing
community detection on a dataset of images, something that, to the best of our knowledge, had not been
done before.

5 Conclusions

The presented methodology is a first step towards building graph-based representations of deep CNN
embeddings. We detail how to include in such a graph both images and features, and how to topologically
codify image-feature and feature-feature relations. By doing so we make deep knowledge available to
a large set of learning algorithms (network analysis tools) which may exploit those representations in a
completely different manner.

The results reported are encouraging, as a topology based algorithm such as FluidC is capable of
identifying relevant communities of images using only topological information. The clusters that can



be found through network analysis tools are significantly different than the clusters that can be found
through more traditional algorithms (e.g., Kmeans) running on a vector representation. Indeed, while
algorithms like FluidC exploit the paths among vertices, algorithms like Kmeans are based on distance
measures which can hardly integrate the information of all possible paths in a graph. The possibility
of running a different type of algorithms makes this novel approach interesting, as it opens the door at
exploiting and reusing the knowledge coded within deep pre-trained neural models in a completely new
way. This is but a small step towards a better understanding of deep representations, and how to exploit
all the knowledge these encode for a wider variety of purposes.

6 Future Work

The experiments shown in this paper are highly exploratory, with the purpose of validating the feasibility
of the hypothesis (i.e., that deep neural representations can be implemented as a graph coherently). An-
alytically, it would be desirable to compare the performance of the proposed approach with alternatives,
such as applying a clustering algorithm on the original vector embeddings. However, clustering evalua-
tion is a controversial topic, as there is not a single solution which may be considered to be the universal
ground truth.

A more relevant evaluation of the approach should be based on an analysis of the semantics captured
by the graph. For that purpose we are considering the extension of the model to include directed edges,
weighted edges, and ontological relations. By doing so one could execute inference methods on top of
the representation, and measure how rich and usable the semantics captured in the graph actually are.
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