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Abstract

This article describes the system that partici-
pated in the shared task (ST) on metaphor de-
tection (Leong et al., 2018) on the Vrije Uni-
versity Amsterdam Metaphor Corpus (VUA).
The ST was part of the workshop on pro-
cessing figurative language at the 16th annual
conference of the North American Chapter of
the Association for Computational Linguistics
(NAACL2018).

The system combines a small assertion of
trending techniques, which implement ma-
tured methods from NLP and ML; in partic-
ular, the system uses word embeddings from
standard corpora and from corpora represent-
ing different proficiency levels of language
learners in a LSTM BiRNN architecture.

The system is available under the APLv2
open-source license.

1 Introduction

Ever since conceptual metaphor theory was laid
out in Lakoff and Johnson (1980), the most vex-
ing question has remained a methodological one:
how can conceptual metaphors be reliably identi-
fied in language use? Although manual identifica-
tion was put on a stronger methodological foot-
ing with the Metaphor Identification Procedure
(MIP) (”Pragglejaz Group”, 2007) and its elabora-
tion into MIPVU (Steen et al., 2010), fuzzy areas
remain due to the fact that conceptual metaphors
can vary between primary metaphors and com-
plex metaphors (cf. Grady, 1997). Furthermore,
highly conventionalized metaphorical expressions
might not be processed in the same way as novel
metaphors. The core process of manual metaphor
identification is not completely unproblematic ei-
ther since it can be difficult to establish whether
the meaning of a lexical unit in its context devi-
ates from its basic meaning or not. In the face of

that slippery terrain, automatic metaphor identifi-
cation emerges as an extremely challenging task.
An increasing volume of research since the start of
annual workshops at NAACL in 2013 has shown
first promising results using different methods of
automated metaphor identification (see for exam-
ple Shutova et al. (2015) and Klebanov et al.
(2016) for previous events). The current shared
task of metaphor identification provided a further
opportunity to put the computational spotting of
metaphors to the test.

Our bid for this task combines (cf. Section 2)
fastText word embeddings (WEs) with a
single-layer long short-term memory bidirectional
recurrent neural network (BiRNN) architecture.
The input, sequences of WE representations of
words, is fed into the BiRNN which predicts
metaphorical usage for each word.

The WEs were trained (cf. Section 4.2) on
different large corpora (BNC, Wikipedia, enTen-
Ten13, ukWaC) and on the Vienna-Oxford Inter-
national Corpus of English (VOICE) as well as
on the TOEFL11 Corpus of Non-Native English.
The latter corpus was used, among others, in the
First Native Language Identification Shared Task
(Tetreault et al., 2013) held at the 8th Workshop on
Innovative Use of NLP for Building Educational
Applications as part of NAACL-HLT 2013.

We were led by the idea (cf. Section 2.3) that
metaphorical language use changes while gaining
proficiency in a language, and so we hoped to be
able to utilise the information contained in corpora
of different proficiency levels.

The paper is organised as follows: We present
our system design with related work in Section 2,
the implementation in Section 3, and the experi-
mental setup with an evaluation in Section 4. Sec-
tion 5 concludes with an outlook on possible next
steps.
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2 Design

Generally, our design builds upon the foundation
laid out by Collobert et al. (2011) for a neural
network (NN) architecture and learning algorithm
that can be applied to various natural language
processing tasks. The most related task specific
design is given in Do Dinh and Gurevych (2016)
who used a NN in combination with WEs to detect
metaphors. In contrast to our study, they used a
dense multi-layer NN while we adapted the design
of Stemle (2016a,b), who combined WEs with
a recurrent NN (RNN) to predict part-of-speech
(PoS) tags of computer-mediated communication
(CMC) and Web corpora for German and Italian.
RNNs are usually considered to be more suitable
for labelling sequential data such as text.

2.1 Word Embeddings

Recently, state-of-the-art results on various lin-
guistic tasks were accomplished by architectures
using neural-network based WEs. Baroni et al.
(2014) conducted a set of experiments comparing
the popular word2vec (Mikolov et al., 2013a,b)
implementation for creating WEs with other well-
known distributional methods across various (se-
mantic) tasks. These results suggest that the WEs
substantially outperform the other architectures on
semantic similarity and analogy detection tasks.
Subsequently, Levy et al. (2015) conducted a com-
prehensive set of experiments that suggest that
much of the improved results are due to the system
design and parameter optimizations, rather than
the selected method. They conclude that ”there
does not seem to be a consistent significant advan-
tage to one approach over the other”.

WEs provide high-quality low dimensional vec-
tor representations of words from large corpora
of unlabelled data. The representations, typically
computed using NNs, encode many linguistic reg-
ularities and patterns (Mikolov et al., 2013b).

2.2 Bidirectional Recurrent Neural Network

NNs consist of a large number of simple, highly
interconnected processing nodes in an architec-
ture loosely inspired by the structure of the cere-
bral cortex of the brain (O’Reilly and Munakata,
2000). The nodes receive weighted inputs through
their connections on one side and fire according to
their individual thresholds of their shared activa-
tion function. A firing node passes on an activation
to all connected nodes on the other side. During

learning the input is propagated through the net-
work and the actual output is compared to the de-
sired output. Then, the weights of the connections
(and the thresholds) are adjusted step-wise so as to
more closely resemble a configuration that would
produce the desired output. After all training data
have been presented, the process typically starts
over, and the learned output values will usually be
closer to the desired values.

Recurrent NNs (RNNs), introduced by Elman
(1990), are NNs where the connections between
the elements are directed cycles, i.e. the networks
have loops, and this enables the NN to model
sequential dependencies of the input. However,
regular RNNs have fundamental difficulties learn-
ing long-term dependencies, and special kinds of
RNNs need to be used (Hochreiter, 1991); a very
popular one is the so called long short-term mem-
ory (LSTM) network proposed by Hochreiter and
Schmidhuber (1997).

Bidirectional RNNs (BiRNN), introduced by
Schuster and Paliwal (1997), extend unidirectional
RNNs by introducing a layer, where the directed
cycles enable the input to flow in opposite sequen-
tial order. While processing text, this means that
for any given word the network not only consid-
ers the text leading up to the word but also the text
thereafter.

Overall, we benefit from available labelled data
with this design but also from large amounts of
available unlabelled data.

2.3 Language Learner Data

Our experimental design also utilizes data from
language learner corpora. This is based on the in-
tuition that metaphor use might vary depending on
learner proficiency. Beigman Klebanov and Flor
(2013) indeed found a correlation between higher
proficiency ratings of learner texts and a higher
density of metaphors in these texts. Their study
is also one of the few in the field of automated
metaphor detection that are concerned with learner
language. Their aim, however, is quite different to
the current study as they try to establish annota-
tions for metaphoric language use that can help to
train an automated classifier of metaphors in test-
taker essays. The current study, by contrast, uti-
lizes learner corpus data to build WEs among other
corpora representing written standard language.
Learner language could be a particularly helpful
source of information for automated metaphor de-
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tection via WEs as learner language provides dif-
ferent usage patterns compared to WEs derived
from standard language corpora.

3 Implementation

We maintain the implementation in a source code
repository1. Our system uses sequences of word
features as input to a BiRNN with a LSTM archi-
tecture.

3.1 Word Embeddings

We use gensim2, a Python tool for unsupervised
semantic modelling from plain text, to load pre-
computed WE models and to compute embedding-
vector representations of words. Words missing in
a WE model, i.e. out-of-vocabulary words (OOV),
are first estimated by looking at a fixed context
of their non-OOV words. If this fails, OOVs are
mapped to their individual, randomly generated,
vector representations.

3.2 Neural Network

Our implementation uses Keras (Chollet, 2015), a
high-level NNs’ library written in Python, on top
of TensorFlow (Abadi et al., 2016), an open source
software library for numerical computation.

The number of input layers corresponds to the
number of employed feature sets. For multiple
feature sets, e.g. multiple WE models or additional
PoS tags, sequences are concatenated on the word
level such that the number of features for an indi-
vidual word grows.

Input sequences have a pre-defined length and
represent original textual sentence segments. In
case a sentence is longer than the sequence length,
the input is split into multiple segments. And if
a segment is shorter than the sequence length, the
remaining slots are padded, i.e. they are filled with
identical dummy information.

Each input layer feeds into a masking layer such
that the padded values from the input sequence
will be skipped in all downstream layers.3 The
masked input is fed into a bidirectional LSTM
layer that, in turn, projects to a fully connected
output layer that is activated by a softmax func-
tion.

1https://github.com/bot-zen/
2https://radimrehurek.com/gensim/
3This is considered good practice and speeds up process-

ing with long sequences and many padded values – with our
rather short sequences it did not help much.

The output is a single sequence of matching
length with labels indicating whether the corre-
sponding word is used metaphorically or not.

During training, we use dropout for the linear
transformation of the recurrent state, i.e. the net-
work drops a fraction of recurrent connections,
which helps prevent overfitting (Srivastava et al.,
2014); and we use a weighted categorical cross-
entropy loss function to counteract the fact that
far fewer words in our sequences are labelled as
metaphorical than non-metaphorical, which usu-
ally hampers classification performance (cf. Kot-
siantis et al., 2006).

4 Experiments and Results

Participants of the ST could either participate in
the metaphor prediction tracks for verbs only, all
content part-of-speech only, or both. For a given
text in VUA, and for each sentence, the task was
to predict metaphoricity for each verb or content
word respectively, and submit the result to Co-
daLab4 for evaluation. Results were calculated as
the harmonic average of the precision and recall
(F1-score) of the metaphoricity label. We partici-
pated with our system in both tasks.

The remainder of this section introduces the of-
ficial data set, our WE models and describes our
fixed hyper-parameters. The results of different
combinations of WE models are shown in Table
1. Also note that all results in this paper refer only
to the all content part-of-speech task.

4.1 Shared Task Data

The VUA, the corpus that was used in the shared
task, originates from the British National Corpus
(BNC). Altogether, it is comprised of 117 texts
covering four genres (academic, conversation, fic-
tion, news). For the ST, VUA was pre-divided
by the organisers into a training and a test set.
The training set was labelled and could be used to
train classifiers, while the participants were sup-
posed to label the test set and submit it. The dis-
tribution of metaphorical vs. non-metaphorical la-
bels was imbalanced with a ratio of roughly 1:6
(11044 : 61567).

4.2 Word Embedding Models

We use pre-built WE models of the follow-
ing corpora: BNC and enTenTen13 web cor-

4http://codalab.org
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10-fold CV
Accuracy

on Training Set
µ — σ

T11 (low) 0.3 1 50 X 0.207 0.917 0.016
T11 (med) 1.8 1 50 X 0.526 0.924 0.011
T11 (high) 1.4 1 50 X 0.514 0.930 0.007
T11 (l+m+h) 3.5 1 50 X 0.541 0.928 0.008
VOICE 1 1 50 X 0.495 0.923 0.010
BNC 100 5 100 X 0.597 0.942 0.005
enTenTen13 19,000 5 100 X 0.594 0.947 0.004
ukWaC 2100 5 100 X 0.598 0.945 0.004
ukWaC T11-size 3.5 1 50 X 0.564 0.933 0.009
Wikipedia17 ca 2300 5 300 X 0.586 0.947 0.003

7 X X X X 0.576 0.941 0.003
7 X X 0.567 0.936 0.008

103.5 X X X X 0.596 0.944 0.008
103.5 X X 0.613 0.945 0.005
103.5 X X 0.597 0.948 0.003
104.5 X X X X X 0.601 0.950 0.004
107 X X X 0.586 0.951 0.002
108 X X X X 0.550 0.948 0.003

19,004.5 X X X X X 0.603 0.947 0.006
21,400 X X X 0.605 0.951 0.003
21,401 X X X X 0.594 0.953 0.003
21,404.5 X X X X X X X 0.597 0.952 0.003

Table 1: Overview of the word embedding models we used, and evaluation results for individual models and some
combinations on the metaphor prediction track for all content part-of-speech.
Number of tokens in the original corpus, parameters minCount and dim for fastText during training of the
models. Our calculated F1-scores on the official labelled test set (they should coincide with the organisers’ results).
The mean accuracy as well as the standard deviation in the accuracy for 10-fold cross validation runs on the training
set.

pus (Jakubı́ček et al., 2013) from SketchEngine5,
as well as Wikipedia176 from fastText (Bo-
janowski et al., 2016).

We trained WE models using fastText’s
SkipGram model with the default parameters7 ex-
cept for the two parameters -minCount (the
minimal number of word occurrences) and -dim
(size of word vectors). The two parameters were
altered to take the smaller sizes of our corpora into

5https://embeddings.sketchengine.co.
uk/static/index.html

6https://fasttext.cc/docs/en/
pretrained-vectors.html

7https://github.com/facebookresearch/
fastText/archive/v0.1.0.zip

account. See Table 1 for details.

Three individual models were trained for the
different proficiency levels low, medium and high
of the training subset of the TOEFL11 (Blanchard
et al., 2013); another model was trained for the full
training set comprising all three proficiency levels.
One model was trained for the VOICE (Seidlhofer
et al., 2013), a corpus of English as it is spoken by
a non-native speaking majority of users in differ-
ent contexts.

Two models were trained for ukWaC (Baroni
et al., 2009), a corpus constructed from the Web
using medium-frequency words from the BNC as
seeds. The first model for the full corpus and
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the second model for a random sample of docu-
ments approximating the token count of the full
TOEFL11 training set.

4.3 Hyper-Parameter Tuning

Hyper-parameter tuning is important for good per-
formance. The parameters of our system were op-
timised via an ad-hoc grid search in 3-fold cross
validation (CV) runs.

Parameters were: NN optimizer (rmsprop,
adadelta, adam), recurrent dropout rate for the
LSTM layer (0.1, 0.25, 0.5), dropout for the in-
put layer (0, 0.1, 0.2), sequence length (5, 10, 15,
50), learning epochs (3, 5, 20, 32) and batch size
(16, 32, 64), and the network architecture, e.g. in-
troducing a second LSTM abstraction layer or us-
ing a Gated Recurrent (GRU) layer instead of the
LSTM layer. Furthermore, we trained WE mod-
els with different values for the dim (25, 50, 100,
150, 200, 250) and minCount (1, 2, 5, 10) pa-
rameters.

The weight for the categorical cross-entropy
loss function is calculated as the logarithm of the
ratio of number of words vs. metaphorical labels.
The context for estimating OOV words was set to
10.

Once set, we used the same configuration for all
experiments.

5 Conclusion & Outlook

The combination of WEs with a BiRNN is capa-
ble of recognizing metaphorical usage of words
better than many other already tested approaches.
More importantly, our design does not rely on
WordNet or VerbNet information, and does not
need concreteness or abstractness information like
many successful architectures from previous an-
nual workshops at NAACL. Besides VUA, our
system only needs running text.

The best result on the test set was achieved
with a combination of TOEFL11 learner data
and data from the BNC. So far, the results are
encouraging—but also mixed—regarding our ini-
tial idea that metaphorical language use at differ-
ent proficiency levels could be utilised to recog-
nizing metaphorical usage of words. To this end,
we are looking forward to output from the Euro-
pean Network for Combining Language Learning
with Crowdsourcing Techniques8, where poten-

8http://www.cost.eu/COST_Actions/ca/
CA16105

tially more and more fine-grained language learner
data will be collected and made available.
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