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Abstract

Contrary to the traditional Bag-of-Words
approach, we consider the Graph-of-
Words (GoW) model in which each doc-
ument is represented by a graph that en-
codes relationships between the different
terms. Based on this formulation, the
importance of a term is determined by
weighting the corresponding node in the
document, collection and label graphs,
using node centrality criteria. We also
introduce novel graph-based weighting
schemes by enriching graphs with word-
embedding similarities, in order to reward
or penalize semantic relationships. Our
methods produce more discriminative fea-
ture weights for text categorization, out-
performing existing frequency-based cri-
teria. Code and data are available online1.

1 Introduction

With the rapid growth of the social media and net-
working platforms, the available textual resources
have been increased. Text categorization or clas-
sification (TC) refers to the supervised learning
task of assigning a document to a set of two or
more predefined categories (or classes) (Sebas-
tiani, 2002). Well-known applications of TC in-
clude sentiment analysis, spam detection and news
classification.

In the TC pipeline, each document is modeled
using the so-called Vector Space Model (Baeza-
Yates and Ribeiro-Neto, 1999). The main issue
here is how to find appropriate weights regard-
ing the importance of each term in a document.
Typically, the Bag-of-Words (BoW) model is ap-
plied and a document is represented as a multiset
of its terms, disregarding co-occurence between

1Code and data: github.com/y3nk0/Graph-Based-TC
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Figure 1: Blending different types of GoWs and
word vector similarities in one framework.

the terms; using this model, the importance of a
term in a document is mainly determined by the
frequency of the term. Although several variants
and extensions of this modeling approach have
been proposed (e.g., the n-gram model (Baeza-
Yates and Ribeiro-Neto, 1999)), the main weak-
ness comes from the underlying term indepen-
dence assumption, where the order of the terms is
also completely disregarded.

After the introduction of deep learning models
for TC (Blunsom et al., 2014; Kim, 2014), recent
work by Johnson and Zhang (2015) shows how
we could effectively use the order of words with
CNNs (LeCun et al., 1995). In many cases though,
space and time limitations may arise due to com-
plex neural network architectures. As stated in
work by Joulin et al. (2017), computation can still
be expensive and prohibitive.

In this paper, we explore fast term weighting
criteria for TC that go beyond the term indepen-
dence assumption. The notion of dependencies
between terms is introduced via a Graph-of-Words
(GoW) representation model. Under this model,
each term is represented as a node in the graph
and the edges capture co-occurrence relationships
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of terms with a specified distance in the document.
We implicitly consider information about n-grams
in the document as well as the collection of doc-
uments – expressed by paths in the graph – with-
out increasing the dimensionality of the problem.
Furthermore, we introduce word-embedding sim-
ilarities as weights in the GoW approach, in order
to further boost the performance of our methods.
Finally, we successfully mix document, collection
and label GoWs along with word vector similari-
ties into a single powerful graph-based framework.
An overview of our approach is shown in Fig. 1.

2 Related Work

Term weighting schemes. A core aspect in the
Vector Space Model for document representation,
is how to determine the importance of a term
within a document. Many criteria have been
introduced with the most prominent ones being
TF, TF-IDF (Salton and Buckley, 1988; Sing-
hal et al., 1996; Baeza-Yates and Ribeiro-Neto,
1999; Robertson, 2004) and Okapi BM25 (Robert-
son et al., 1995), while some recent ones in-
clude N-gram IDF (Shirakawa et al., 2015). Lan
et al. (2005) conducted a comparative study of
frequency-based term weighting criteria for text
categorization; one of their outcomes was that, in
many cases, the IDF factor is not significant for
the categorization task, leading to no improvement
of the performance. It is interesting to point out
here that, more specialized approaches have been
proposed for specific classification tasks, such as
the Delta TF-IDF method that constitutes an ex-
tension of TF-IDF for sentiment analysis (Mar-
tineau and Finin, 2009). However, most of the pre-
viously proposed frequency-based weights con-
sider the document as a Bag-of-Words; that way,
any structural information about the ordering or in
general, syntactic relationship of the terms, is ig-
nored by the weighting process.

Text categorization. A number of diverse ap-
proaches have been proposed for TC (Joachims,
1998; McCallum and Nigam, 1998; Nigam et al.,
2000; Sebastiani, 2002; Kim et al., 2006). The
first step of TC concerns the feature extraction
task, i.e., which features will be used to repre-
sent the textual content. Typically, the straight-
forward Bag-of-Words approach is adopted, where
every document is represented by a feature vector
that contains boolean or weighted representation
of unigrams or n-grams in general. In the case

of weighted feature vectors, various term weight-
ing schemes have been used, with the most well-
known ones being TF (Term Frequency), TF-IDF
(Term Frequency - Inverse Document Frequency).
Although these weighting schemes were initially
introduced in the NLP and IR fields, they have
also been applied in the TC task. Paltoglou and
Thelwall (2010) reported that, in the case of senti-
ment analysis, extensions of the TF-IDF weighting
schemes introduced in the IR field, can further im-
prove the classification accuracy. A comprehen-
sive review of this area is offered in the article by
Sebastiani (2002).

Deep Learning for TC. With the rise of deep
learning models, CNNs were applied for text clas-
sification (Blunsom et al., 2014; Kim, 2014; John-
son and Zhang, 2015). Next, Zhang et al. (2015)
presented Character-level CNNs for the task of
TC. Finally, Joulin et al. (2017) proposed a novel
text classifier which achieves equivalent perfor-
mance to state-of-the-art TC models, with faster
learning times. Our work does not focus on the
classifier part, as the aforementioned methods, but
on the extraction of better features.

Graph-based text categorization. In the re-
lated literature, most of the graph-based method
for TC, rely on graph mining algorithms that are
applied to extract frequent subgraphs, which are
then used to produce feature vectors for classifi-
cation (Deshpande et al., 2005; Jiang et al., 2010;
Rousseau et al., 2015; Nikolentzos et al., 2017).
The basic shortcoming of those methods stems
from the computational complexity of the frequent
subgraph mining algorithm. Furthermore, most of
these methods require from the user to set the sup-
port parameter, which concerns the frequency of
appearance of a subgraph. Close to our work are
the approaches followed by Hassan et al. (2007)
and Malliaros and Skianis (2015); they explored
how random walks and other graph centrality cri-
teria can be applied to determine the importance
of a term.

Graph-based text mining, NLP and IR. Rep-
resenting documents as graphs is a well-known ap-
proach in NLP and IR. TextRank algorithm, pro-
posed by Mihalcea and Tarau (2004), was among
the first works that considered a random walk
model similar to PageRank, over a graph repre-
sentation of the document, in order to extract rep-
resentative keywords and sentences. Later, sev-
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Figure 2: Example of document, collection-level and label GoWs for a collection composed by two
documents and window size w = 3. Weights on the edges of Gd1 and Gd2 correspond to the similarity
of two terms in the vector space. Here, Label GoWs are the same with Document GoWs (one document
per class-label).

eral methods for those tasks were followed (Erkan
and Radev, 2004; Litvak and Last, 2008; Boudin,
2013; Lahiri et al., 2014; Rousseau and Vazirgian-
nis, 2015). Another domain where graph-based
term weighting schemes have been applied is the
one of ad hoc Information Retrieval (Rousseau and
Vazirgiannis, 2013). An interesting survey can be
found in the work of Blanco and Lioma (2012) for
a detailed description of graph-based methods in
the text domain.

3 Preliminaries and Background

Let D = {d1, d2, . . . , dm} be a collection of doc-
uments and let C = {c1, c2, . . . , c|C|} be the set of
predefined categories. Text categorization is con-
sidered the task of assigning a boolean value to
each pair (di, ci) ∈ D × C, i.e., assigning each
document to one or more categories (Sebastiani,
2002). The main point here is how to find appro-
priate weights for the terms within a document. As
we will present below shortly, our approach uti-
lizes network centrality criteria.

Node Centrality Criteria. Centrality2 repre-
sents a central notion in graph theory and network
analysis in general; it constitutes of measures that
capture the relative importance of the node in the
graph based on specific criteria (Newman, 2010).
One important characteristic of the centrality mea-
sures is that they consider either local information

2en.wikipedia.org/wiki/Centrality.

of the graph (e.g., degree centrality, in-degree/out-
degree centrality in directed networks, weighted
degree in weighted graphs, clustering coefficient)
(Newman, 2010), or more global information – in
the sense that the importance of a node is deter-
mined by the properties of the node globally in
the graph (e.g., PageRank, closeness). Let G =
(V,E) be a graph (directed or undirected), and let
|V |, |E| be the number of nodes and edges respec-
tively. Next, we define basic centrality criteria that
are used in the proposed methodology.

Degree centrality. The degree centrality is one
of the simplest local node importance criteria,
which captures the number of neighbors that each
node has. Let N (i) be the set of nodes con-
nected to node i. Then, the degree centrality can
be derived based on the following formula: de-
gree centrality(i) = |N (i)|

|V |−1 .

Closeness centrality. Let dist(i, j) be the shortest
path distance between nodes i and j. The close-
ness centrality of a node i is defined as the inverse
of the average shortest path distance from the node
to any other node in the graph: closeness(i) =

|V |−1∑
j∈V dist(i,j) .

PageRank centrality. PageRank counts the num-
ber and quality of edges to a node to determine
a rough estimate of how important the node is:
PR(i) = 1−α

|V | + α
∑
∀(j,i)∈E

PR(j)
out-deg(j) , where α

is the teleportation probability and out-deg(i) de-
notes the out degree on node i.
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4 Proposed Framework

In this section, we present the components of the
proposed graph-based framework for TC.

4.1 Graph Construction

We model documents as graphs that capture de-
pendencies between terms. More precisely, each
document d ∈ D is represented by a graph
Gd = (Vd, Ed), where the nodes correspond to
the terms t of the document and the edges capture
co-occurrence relationships between terms within
a fixed-size sliding window of size w. That is, for
all the terms that co-occur within the window, we
add edges between the corresponding nodes of the
graph. Note that, the windows are overlapping
starting from the first term of the document; at
each step, we simply remove the first term of the
window and add the new one from the document.
As graphs constitute rich modeling structures, sev-
eral parameters about the construction phase need
to be specified, including the directionality of the
edges, the addition of edge weights, well as the
size w of the sliding window. Fig. 2 gives a toy
example of the construction of GoW for a collec-
tion composed by two documents.

To summarize, the key point of the graph-based
representation for TC is the fact that it deals with
the term independence assumption. Even if we
consider the n-gram model, still information about
the relationship between two different n-grams is
not fully captured – as happens in the case of
graphs. This has also been noted in other applica-
tion domains (e.g., IR (Rousseau and Vazirgiannis,
2013)).

4.2 Term Weighting

Having the graph, the importance of a term in a
document can be inferred by the importance of
the corresponding node in the graph. In the previ-
ous section, we presented local and global central-
ity criteria that have been widely used for graph
mining and network analysis purposes; here, we
propose that those criteria can also be used for
weighting terms in the TC task. That way, sim-
ilar to TF, we can define the Term Weight (TW)
weighting scheme as TW(t, d) = centrality(t, d),
where centrality(t, d) corresponds to the score of
term (node) t in the graph representation Gd of
document d. The interesting point here is that TW
can be used along with any centrality criterion in
the graph, local or global.

Furthermore, we can extend this weighting
scheme by considering information about the in-
verse document frequency (IDF factor) of the term
t in the collection D. That way, we can derive the
TW-IDF model as follows:

TW-IDF(t, d) = TW(t, d)× IDF(t,D). (1)

In fact, TW and TW-IDF constitute suites for
graph-based term-weighting schemes and thus,
can be applied in any text analytics task. Some
of them have already been explored in graph-
based IR (Rousseau and Vazirgiannis, 2013) and
keyword extraction (Mihalcea and Tarau, 2004;
Rousseau and Vazirgiannis, 2015).

The proposed weights are inferred from the in-
terconnection of features (i.e., terms) – as sug-
gested by the graph – and therefore information
about n-grams is implicitly captured. That way,
the feature space of the learning problem is kept
to the one defined by the unique unigrams of our
collection (instead of using simultaneously as fea-
tures all the possible unigrams, bigrams, 3-grams,
etc.), but the produced term weights incorporate
n-gram information through the graph-based rep-
resentation.

4.3 Inverse Collection Weight (ICW)

In this paragraph, we introduce the concept of In-
verse Collection Weight (ICW) – a graph-based
criterion to penalize the weight of terms that are
“important” across the whole collection of docu-
ments. The main concept behind ICW is the col-
lection level graph G – an extension of the Graph-
of-Words in the collection of documents D.

Definition 1 (Collection Level Graph G) Let
{G1, G2, . . . , Gd}|D| be the set of graphs that
correspond to all documents d ∈ D. The col-
lection level graph G is defined as the union of
graphs G1 ∪G2 ∪ . . . ∪Gd over all documents in
the collection.

The union of two graphs G = (VG, EG) and H =
(VH , EH) is defined as the union of their node and
edge sets, i.e.,G∪H = (VG∪VH , EG∪EH). The
number of nodes in graph G is equal to the number
of unique terms in the collection, while the number
of edges is equal to the number of unique edges
over all document-level graphs (see also Fig. 2).

This graph captures the overall dependencies
between the terms of the collection; the relative
overall importance of a term in the collection will

52



be proportional to the importance of the corre-
sponding node in G. Following similar method-
ological arguments as used for IDF (Robertson,
2004), we define a probability distribution over the
nodes of G (or equivalently, the unique terms of
D), with respect to a centrality (term-weighting in
our case) criterion; then, the probability of node
(term) t will be:

Pr(t) =
TW(t,D)∑
v∈D TW(v,D) . (2)

Note that, in Eq. (2), we use D instead of G; we
consider that the space defined by the document
collection D is equivalent to the one defined by
graph G with respect to the unique terms of the
collection. This way, the notion of TW(t,D) used
here is consistent with what was described earlier.
Based on this, we define the ICW measure as:

ICW(t,D) = maxv∈D TW(v,D)
TW(t,D) . (3)

Instead of selecting the maximum centrality in the
collection level (Eq. (3)), the sum of all centralities
also yields good results.

ICW shares common intuition with the in-
verse total term frequency described in Robertson
(2004). In fact, it can be considered as an exten-
sion of the total collection frequency of a term,
to the graph-based document representation. Fur-
thermore, similar to TW, it can be used along with
any node centrality criterion.

Using ICW as a graph-based collection-level
term penalization factor, we derive a new class of
term-to-document weighting mechanism, namely
TW-ICW. This weighting scheme is derived com-
bining different local (i.e., document-level) and
global (i.e., collection-level) criteria as follows:

TW-ICW(t, d) = TW(t, d)× log(ICW(t,D)).

In the case of TW and ICW, any centrality crite-
rion can be applied. However, the computational
complexity is a crucial factor that should be taken
into account. Nevertheless, as we have noticed
from the experimental evaluation, even using sim-
ple and easy-to-compute local criteria (e.g., de-
gree), we achieve good classification performance.

4.4 Label Graphs
Shanavas et al. (2016) introduced supervised term
weighting (TW-CRC) as a method to integrate
class information with graphs. Similarly, we cre-
ate a graph for each class (label), where we add all

words of documents belonging to the respective
class as nodes and their co-occurrence as edges.
Our weighting scheme is a variant of TW-CRC;
we define LW for a term t as:

LW(t) =
max(deg(t, L))

max(avg(deg(t, L)),min(deg(L))
,

where the maximum degree of term t in all label
graphs (L) is divided by the max of two values:
the average degree of the term in all label graphs
(except the one having the max degree) and the
min degree of all the terms in all the label graphs.
Then, we obtain ICW-LW as follows:

ICW-LW(t, d) = log(ICW(t,D)× LW(t)),

and multiply it with TW(t, d) to get TW-ICW-LW.
Notice that, supervised frequency-based methods
have also been proposed in previous work (Debole
and Sebastiani, 2004; Huynh et al., 2011).

4.5 Edge Weighting using Word Embeddings

With our proposed framework, we can now use
word embeddings (Bengio et al., 2003) in order to
extract similarities between terms. Our goal is to
integrate these similarities in the graph represen-
tation as weights on the edge between two words.
The key idea behind our approach is that we want
to reward semantically close words in the graph-
document level (TW) and penalize them in the col-
lection level (ICW).

The most commonly used similarity between
two words t1 and t2 in the word-embedding space
is cosine similarity, which ranges between -1 and
1. In order to have a valid distance metric, we need
to bound this between 0 and 1. We use the angu-
lar similarity to represent the weight of an edge
between two words, and since the vector elements
may be positive or negative, the formula becomes:

weight(t1, t2) = 1− arccos(sim(t1, t2))
π

. (4)

The best performance was given by using
Google’s pre-trained word embeddings (Mikolov
et al., 2013) and not by learning them by the
datasets. Since the words included in the pre-
trained version of word2vec are case sensitive
and not stemmed, we did not apply any of these
transformations. For words that do not appear
in word2vec, we add a small value as similarity.
Other distances (e.g. inverse euclidean, fractional)
did not yield any further improvement.
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Table 1: Datasets’ statistics: #ICW shows the
number of edges in the collection-level graph;
#w2v: number of words that exist in pre-trained
vectors.

Train Test Voc Avg #w2v #ICW

IMDB 1,340 660 32,844 343 27,462 352K
WEBKB 2,803 1,396 23,206 179 20,990 273K
20NG 11,293 7,528 62,752 155 54,892 1.7M

AMAZON 5,359 2,640 19,980 65 19,646 274K
REUTERS 5,485 2,189 11,965 66 9,218 163K

SUBJ. 6,694 3,293 8,639 11 8,097 58K

A similar approach for generic keyphrase ex-
traction can be tracked in work by Wang et al.
(2015). Providing more information in the
weights, like number of co-occurrences between
words, did not yield better results.

4.6 Classification Algorithms

Since the goal of this paper is to introduce new
term weighting schemes, we rely on widely used
classification algorithms. Specifically, we have
used linear SVMs, due to their superior perfor-
mance in TC (Joachims, 1998). Furthermore, as
discussed in Leopold and Kindermann (2002), the
choice of the kernel function of SVM is not very
crucial, compared to the significance of the term
weighting schemes.

5 Experiments

We have evaluated our method on six freely avail-
able standard TC datasets, covering multi-class
document categorization, sentiment analysis and
subjectivity. Specifically: (1) 20NG3: news-
group documents belonging to 20 categories, (2)
REUTERS3: 8 categories of Reuters-21578, (3)
WEBKB3: 4 most frequent categories of web-
pages from Computer Science departments, (4)
IMDB (Pang and Lee, 2004): positive and nega-
tive movie reviews; (5) AMAZON (Blitzer et al.,
2007): product reviews acquired from Amazon
over four different sub-collections; (6) SUBJEC-
TIVITY (Pang and Lee, 2004): contains subjec-
tive sentences gathered from Rotten Tomatoes and
objective sentences gathered from IMDB. A sum-
mary of the datasets can be found in Table 1.

In the experiments, linear SVMs were used with
grid search cross-validation for tuning the C pa-
rameter. We also examined logistic regression,
and observed similar performance. In the text

3web.ist.utl.pt/acardoso/datasets/

preprocessing step, we have removed stopwords.
No stemming or lowercase transformation was ap-
plied in order to match the words in word2vec.

For evaluation we use macro-average F1 score
and classification accuracy on the test sets; that
way, we deal with the skewed class size dis-
tribution of some datasets (Sebastiani, 2002).
For the notation of the proposed schemes, we
use TW (centrality measure) (e.g., TW (degree))
to indicate the centrality and TW-ICW (central-
ity at G, centrality at G) (e.g., TW-ICW (de-
gree, degree)) for the local and collection-level
graphs respectively. In TW-IDF (w2v), we com-
pute the weighted degree centrality on the docu-
ment level, with word-embedding similarities as
weights. Similarly, in TW-ICW (w2v) we com-
pute both weighted centralities for document and
collection graphs. Finally, we denote as TW-ICW-
LW the blending of TW, ICW and label graphs
(LW). In label graphs we only make use of the de-
gree centrality, since it is fast and performs best.

5.1 Results

Table 2 presents the results concerning the cate-
gorization performance of the proposed schemes
for the six datasets. As discussed previously, the
size of the window considered to create the graphs
is one of the model’s parameters. From the ex-
tensive experimental evaluation that we have per-
formed, we have concluded that small window
sizes give the most persistent results across var-
ious datasets and weighting schemes. For com-
pleteness in the presentation, we report results for
two window sizes. In order to capture more in-
formation, we need larger window sizes for small
datasets (e.g. SUBJECTIVITY). Also, since for the
baseline methods (TF, TF binary, TF-IDF, w2v,
TF-IDF-w2v) there is no notion of window size,
the results for w = {2, 3} are the same. We
have also examined several centrality criteria (us-
ing both undirected and directed graphs); undi-
rected giving better results.

Comparing TF to the graph-based ones, namely
TW (degree), in almost all cases TW gives higher
F1 and accuracy results. Similar observations can
be made in the case where the IDF penalization
is applied. In most of the datasets, the TW-IDF
(degree) scheme performs quite well. The inter-
esting point here, which is confirmed by the re-
lated literature (Lan et al., 2005), is that TF-IDF
is in general inferior to TF in TC. However, when
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Table 2: Macro-F1 and accuracy for window size w. Bold shows the best performance on each window
size and blue the best overall on each dataset. * indicates statistical significance of improvement over TF
at p < 0.05 using micro sign test. MAX and SUM state the best nominator for ICW in Eq. (3).

20NG (MAX) IMDB (SUM) SUBJECTIVITY (MAX)

Methods w = 3 w = 4 w = 2 w = 3 w = 6 w = 7

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

TF 80.88 81.55 - 84.23 84.24 - 88.42 88.43 -
w2v 74.43 75.75 - 82.57 82.57 - 87.67 87.67 -
TF-binary (ngrams) 81.64 82.11* - 83.02 83.03 - 87.51 87.51 -
TW (degree) 82.37 83.00* 82.21 82.83* 84.82 84.84 84.67 84.69 88.33 88.33 89.00 89.00*
TW (w2v) 81.88 82.51* 82.21 82.87* 84.66 84.69 84.52 84.54 87.75 87.57 87.66 87.67

TF-IDF 82.44 83.01* - 83.33 83.33 - 89.06 89.06* -
TF-IDF-w2v 82.52 83.09* - 82.87 82.87 - 89.91 89.91* -
TW-IDF (degree) 84.75 85.47* 84.80 85.46* 82.86 82.87 83.02 83.03 89.33 89.34* 89.33 89.34*
TW-IDF (w2v) 84.66 85.32 84.46 85.13 83.47 83.48 83.31 83.33 86.42 86.42 86.51 86.51

TW-ICW (deg, deg) 85.24 85.80* 85.41 86.05* 84.98 85.00 85.13 85.15 89.30 89.31* 89.61 89.61*
TW-ICW (w2v) 85.33 85.93* 85.29 85.90* 85.12 85.15 84.82 84.84 89.61 89.61* 87.30 87.30

TW-ICW-LW (deg) 85.01 85.66* 85.02 85.66* 85.73 85.75 85.28 85.30 90.12 90.13* 90.27 90.28*
TW-ICW-LW (w2v) 82.56 83.11* 82.24 82.81* 85.29 85.30 84.39 84.39 87.70 87.70 87.70 87.70
TW-ICW-LW (pgr) 83.92 84.66 83.80 84.54 84.97 85.00 85.73 85.75 86.60 86.60 86.45 86.45
TW-ICW-LW (cl) 84.61 85.22 84.71 85.27 87.27 87.27* 86.06 86.06 89.97 89.97* 90.09 90.10*

AMAZON (MAX) WEBKB (SUM) REUTERS (MAX)

Methods w = 2 w = 3 w = 2 w = 3 w = 2 w = 3

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

TF 80.68 80.68 - 90.31 91.91 - 91.51 96.34 -
w2v 79.05 79.05 - 84.54 86.58 - 91.35 96.84 -
TF-binary (ngrams) 79.84 79.84 - 91.22 92.85 - 86.33 95.34 -
TW (degree) 80.07 80.07 91.69 92.64 91.45 92.49 93.58 97.53* 93.08 97.25*
TW (w2v) 80.07 80.07 79.54 79.54 91.70 92.64 91.00 92.06 93.09 97.35* 93.43 97.25*

TF-IDF 80.26 80.26 - 87.79 89.89 - 91.89 96.71 -
TF-IDF-w2v 80.49 80.49 - 88.18 90.18 - 91.33 96.80 -
TW-IDF (degree) 81.47 81.47* 81.55 81.55* 90.38 91.70 90.47 91.84 93.80 97.30* 93.13 97.35*
TW-IDF (w2v) 79.61 79.62 77.60 77.61 90.81 92.20 90.60 91.91 93.38 97.44* 93.87 97.44*

TW-ICW (deg, deg) 82.08 82.08* 82.02 82.02* 91.72 92.78 91.42 92.49 92.91 97.35 93.59 97.39*
TW-ICW (w2v) 80.86 80.87* 78.82 78.82 91.58 92.64 91.84 92.85 93.57 97.30* 92.96 97.25

TW-ICW-LW (deg) 82.72 82.72* 82.91 82.91* 91.86 92.92 91.95 92.92 93.88 97.53* 93.48 97.35*
TW-ICW-LW (w2v) 80.56 80.56 78.32 78.33 90.74 91.99 90.01 91.34 92.51 96.89 92.14 96.98
TW-ICW-LW (pgr) 82.23 82.23* 82.46 82.46* 91.18 92.20 92.23 93.07 93.38 97.35* 93.37 97.35*
TW-ICW-LW (cl) 82.90 82.91* 83.02 83.03* 92.72 93.57* 92.86 93.57* 93.12 97.25 92.87 97.21

the IDF penalization factor is applied on the TW
term-to-document weighting, a powerful mecha-
nism is derived. In the case of purely graph-based
schemes, we can observe that some of them pro-
duce very good classification results. In almost all
cases, TW-ICW-LW (degree or closeness) achieve
the best performance.

Significant improvement is observed by adding
the w2v similarities as weights in the document,
collection level and label graphs in almost all
datasets. In fact, we have obtained better results
in 20NG (TW-ICW (w2v)), WebKB (TW-ICW
(w2v)) and Reuters (TW-IDF(w2v)), by boosting
semantically close words in the document level
and penalizing them in the collection level.

TF n-gram binary scheme (TF binary) has also

been examined, i.e., all the possible n-grams of
the collection with binary weights (up to 6-grams
in our experiments). For comparison reasons, the
size of the unigram feature space considered by
our framework is equal to the unique terms in
the collections and much smaller compared to the
n−grams ones. Moreover, graph-based weighting
is able to outperform TF (binary) in all datasets.

We clearly see that by fusing document, collec-
tion and label graphs we obtain the best results in
almost in 5 out of 6 datasets. Label graphs in-
formation consist a powerful weighting method,
when combined with our proposed collection level
graph approach. Adding word2vec similarities as
weights, when label graphs are used, does not im-
prove the accuracy. This implies that important
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20NG IMDB SUBJ. AMAZON WEBKB REUTERS

CNN (no w2v, 20 ep.) (Kim, 2014) 83.19 74.09 88.16 80.68 88.17 94.75
FastText (100 ep.) (Joulin et al., 2017) 79.70 84.70 88.60 79.50 92.60 97.00

TextRank (Mihalcea and Tarau, 2004) 82.56 83.33 84.78 80.49 92.27 97.35
Word Attraction (Wang et al., 2015) 61.24 70.75 86.60 78.29 79.46 91.34

TW-CRC (Shanavas et al., 2016) 85.35 85.15 89.28 81.13 92.71 97.39

TW-ICW-LW (ours) 86.05 87.27 90.28 83.03 93.57 97.53

Table 3: Comparison in accuracy(%) to state-of-the-art deep learning and graph-based approaches.
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Figure 3: F1 score (left) and accuracy (right) of
TW, TW-ICW and TW-ICW-LW (all degree) on
REUTERS, WEBKB and SUBJECTIVITY, for win-
dow size w = {2, . . . , 10}.

terms concerning different labels can be close in
the word vector space. Choosing closeness in the
document level GoW yields the best performance
in 3 datasets. Closeness can only have an affect
in larger document lengths and when used along
with label graphs.

To further investigate the effectiveness of our
approach, we have compared our results with cur-
rent state-of-the-art graph-based and non graph-
based methods. In Table 3 we compare against
CNN for text classification ,without pre-trained
word vectors (Kim, 2014), FastText (Joulin et al.,
2017), TextRank (Mihalcea and Tarau, 2004),
Word Attraction weights based on word2vec sim-
ilarities (Wang et al., 2015) and Supervised Term
Weighting (TW-CRC) by Shanavas et al. (2016).
Our work produces comparable to state-of-the-art
results. Since the implementation of most models
is our own, their performance is not optimal.

Selecting the window size w is also impor-
tant. As we observed, the maximum accuracy
is achieved while using small window sizes. In
any case, even if larger values of w were able to
get slightly better results, a smaller window size
would be preferable, due to the overall overhead

that could be introduced (increase of the density
of the graph). Figure 3 depicts the F1 score and
accuracy on the WEBKB, REUTERS and SUBJEC-
TIVITY datasets, using the TW, TW-ICW and TW-
ICW-LW(deg) schemes for various window sizes.
We notice also that larger sliding windows are only
improving accuracy in datasets with small docu-
ment length (e.g. SUBJECTIVITY).

6 Conclusion & Future Work

In this paper, we proposed a graph-based frame-
work for TC. By treating the term weighting task
as a node ranking problem of interconnected fea-
tures defined by a graph, we were able to deter-
mine the importance of a term using node central-
ity criteria. Building on this formulation, we intro-
duced simple-yet-effective weighting schemes at
the collection and label level, in order to penalize
globally important terms (as analogous to “glob-
ally frequent terms”) and reward locally impor-
tant terms respectively. We also incorporate ad-
ditional word-embedding information as weights
in the graph-based representations.

Our proposed methods could also be applied
in IR. In fact, document-level graph-based term
weighting has already been applied there, so it
would be interesting to examine the performance
of the proposed collection-level (ICW) penaliza-
tion mechanism. In the unsupervised scenario,
where label information is not available, commu-
nity detection algorithms may be applied to iden-
tify clusters of words or documents in collection
graphs. Graph-based representations of text could
also be fitted into deep learning architectures fol-
lowing the idea of Lei et al. (2015). Lastly, one
could examine a Graph-of-documents approach,
in which we create a graph, where nodes rep-
resent documents and edges correspond to sim-
ilarity between them. In this case, graph ker-
nels could be utilized for graph comparison and/or
Word Mover’s distance (Kusner et al., 2015) be-
tween two documents as weights.
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