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Abstract

The presence of misspellings and other errors or non-standard word forms poses a consider-
able challenge for NLP systems. Although several supervised approaches have been proposed
previously to normalize these, annotated training data is scarce for many languages. We in-
vestigate, therefore, an unsupervised method where correction candidates for Swedish language
learners’ errors are retrieved from word embeddings. Furthermore, we compare the usefulness
of combining cosine similarity with orthographic and phonological similarity based on a neural
grapheme-to-phoneme conversion system we train for this purpose. Although combinations of
similarity measures have been explored for finding correction candidates, it remains unclear how
these measures relate to each other and how much they contribute individually to identifying the
correct alternative. We experiment with different combinations of these and find that integrating
phonological information is especially useful when the majority of learner errors are related to
misspellings, but less so when errors are of a variety of types including, e.g. grammatical errors.

1 Introduction

During the language acquisition process, learners often use word forms which deviate, in one way or
another, from a standard that native (L1) speakers usually adhere to. These deviations, also referred to as
errors or non-normative forms, result often in differences in spelling which can lead to forms that might
not exist in a language (non-word errors). Inferring the intended meaning and the correct word form for
such errors can be challenging both for humans and for machines.

In previous work, a number of approaches have been tested for the automatic correction of language
learner errors, which rely often on annotated data (Ng et al., 2014; Mishra and Kaur, 2013). For nor-
malizing native speakers’ non-standard use of spelling, however, a recent direction being explored is the
use of word embeddings as an unsupervised solution (Bertaglia and Nunes, 2016; Fivez et al., 2017).
A major advantage of this approach is that it does not require annotated training data. Such methods
rely on the intuition that semantically similar words are grouped close to each other in the vector space.
Incorporating character n-grams when building word representations completes this type of similarity
with orthographic and morphological relatedness (Bojanowski et al., 2016). This can be useful for de-
tecting correction candidates for those types of errors that involve only a slight variation of word forms,
such as spelling and inflectional errors. Cosine similarity is often combined with other lexical similarity
measures (Bertaglia and Nunes, 2016), their individual contribution and interaction, however, remains
less explored. The research questions that we address in this article are:

• RQ1: How useful are word embeddings based on character n-grams for retrieving correction candi-
dates for language learners’ errors?

• RQ2: Does capturing phonological similarities between sounds provide helpful additional informa-
tion for identifying corrections?

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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• RQ3: What combination of different similarity measures is most efficient in this context?

The usefulness of word embeddings with character n-grams has not been previously explored specif-
ically for correcting errors made by second or foreign language (L2) learners. While there might be
similarities between the type of spelling errors that L1 and L2 speakers make (e.g. based on the position
of keys while typing), in the case of the latter category grammatical errors may also occur. Moreover,
L2 spelling errors may be often induced also by sound similarity or orthographic differences between L1
and L2.

Since data annotated with information about L2 errors and their correction is scarce for most lan-
guages, exploring unsupervised methods in this context is particularly valuable. This is the case also for
Swedish, the target language of our experiments. As an unsupervised solution, we evaluate embeddings
where words are represented as the sum of their character n-grams for L2 error correction by inspecting
how often correction candidates occur among the most similar words based on cosine similarity. We
compare embeddings created using a large collection of Wikipedia articles with embeddings trained on
a smaller amount of specialized corpora related to L2 learning combined with blog texts. We find that
the latter alternative provides twice more often the correction among the set of most similar words than
the former.

One of the obstacles of spelling words correctly is that different graphemes can be used to encode
the same sound in a certain language. This similarly in pronunciation, however goes beyond the type
of information that a similarity measure based on character n-grams and orthography could provide.
Therefore, we propose a phonological similarity measure for capturing this aspect. To address RQ2, we
train a grapheme-to-phoneme conversion system based on neural networks to be able to map even out-of-
vocabulary (OOV) words, such as non-word errors, to a phonological representation. We show that this
system improves on the results of a previous rule-based attempt at solving this task for Swedish. We then
compute the similarity based on a Levenshtein distance discounted for phonological relatedness between
the phonological representation of each non-word error and that of the intended word. Furthermore, we
investigate the correlation between different similarity measures and find that phonological similarity
correlates less with cosine and orthographic similarity than these two with each other.

In relation to RQ3, we compare cosine, orthographic and phonological similarity and investigate their
interaction for finding the intended word for an L2 error. We aggregate cosine similarity and the other
two similarity measures individually and in combination and observe how the ranking of the correct word
changes compared to other most similar words retrieved from word embeddings. Our results indicate
that combining cosine and orthographic similarity worked best for the variety of errors found in learner
essays, whist for errors collected from spelling exercises summing all three measures, or combining
cosine and phonological similarity was more efficient.

This work has also a number of engineering contributions, which are being made freely available.1

This includes (i) a word embedding incorporating character n-grams, trained on a combination of L2
relevant corpora and blog texts; (ii) a grapheme-to-phoneme conversion system for Swedish based on a
large lexical database and deep learning methods; (iii) the implementation of a phonological similarity
measure based on binary phonological features rooted in linguistic theory.

This article is structured as follows. In section 2, we present previous work related to error correc-
tion, which is followed by the description of a small evaluation dataset (Section 3) used to measure
the usefulness of the proposed techniques. We then describe the word embeddings (Section 4) and the
grapheme-to-phoneme conversion system (Section 5) created, which are at the basis of the similarity
measures used for finding optimal correction candidates. Section 6 details the results of our experiments
on the usefulness of the similarity measures. Finally, we conclude our paper in Section 7.

2 Related work

In this section, we first summarize previous literature on error correction with the use of NLP in the edu-
cational domain. Then, we focus specifically on the use of word embeddings for spelling normalization
and previous attempts at solving this task with different methods for Swedish.

1The resources are available at https://github.com/IldikoPilan/swell-norm
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2.1 Error correction in educational NLP applications

Throughout the language learning process, learners produce a range of written responses which vary
in size and quality depending on the specific task and learners’ proficiency level. A common scale of
proficiency levels is the CEFR, the Common European Framework of Reference for Languages (Council
of Europe, 2001). The CEFR proposes a six-point scale of proficiency levels which ranges from A1
(beginner) to C2 (advanced) level.

Learner-written texts are challenging to process automatically since, unlike the standard language
texts used for training most NLP tools, they often contain errors. This is especially problematic for texts
written by lower proficiency learners where the amount of such errors can have a substantial impact
on the accuracy of automatic analyses. Both rule-based and statistical methods have been explored for
the automatic detection and correction of errors, including finite state transducers (Antonsen, 2012) and
different hybrid systems proposed in connection with the CoNLL Shared Task on grammatical error
correction for L2 English (Ng et al., 2014). Most of the competing systems of this Shared Task re-used
existing spell checking systems in their L2 error correction pipeline. Solutions for dealing specifically
with L2 misspelling remained, however, less explored.

Language learning errors provide useful insights into L2 learners’ development and have therefore
been used for assessing writing quality. Yannakoudakis et al. (2011) present experiments for automat-
ically predicting overall, human-assigned scores for texts written by L2 English test takers at upper-
intermediate level. Error-rate features showed a high correlation with these scores. E-rater (Burstein,
2003) is a commercial essay scoring system that measures writing quality based on a variety of linguis-
tic features. Also in this system, grammatical accuracy is used as an indicator of quality alongside the
topical relevance of the vocabulary used and features based on discourse analysis.

2.2 Spelling error correction with word embeddings

Word embeddings represent words in a vector space by grouping semantically similar words near each
other based on the idea that words that share similar contexts are semantically related (Baroni et al.,
2014). We can measure how closely related two or more words are based on cosine similarity from these
representations. Word embeddings are useful for a number of lexical semantic tasks such as detecting
synonyms and disambiguating word senses, see e.g. in Iacobacci et al. (2016). Recently, the usefulness
of these models has been also explored for spelling error correction. Bertaglia and Nunes (2016) explore
word embeddings for normalizing noisy user-generated content for Brazilian Portuguese. The authors
collect correction candidates from the embeddings based on cosine similarity and rank them by comput-
ing a combined similarity score. This includes, besides cosine similarity, a lexical similarity measure
consisting of edit distance, longest common sub-sequence and diacritical similarity. Fivez et al. (2017)
present a similar method for spelling error correction in English clinical text based on character n-gram
embeddings. Correction candidates are collected from a lexicon based on both graphical and phonolog-
ical distance and the candidate maximizing cosine similarity with the context words appearing around
the error is chosen as correction. The authors find that this approach outperformed existing off-the-shelf
systems.

2.3 Spelling error correction for Swedish

Grigonyte and Hammarberg (2014) present a method for automatically identifying those misspellings
made by L2 Swedish learners which are induced by a similarity in pronunciation. In the data2 analyzed
by the authors, 21% of L2 misspellings were related to pronunciation similarities. They propose a model
based on a small dataset of errors and their corrections as well as a language model for distinguish-
ing pronunciation-related misspellings and find that incorporating additional information in their model
would be required for an improved performance.

Stymne et al. (2017) propose an annotation layer incorporating error correction for a corpus of L1 and
L2 Swedish student writings. In their pilot experiment, correction candidates are collected from a smaller
amount of annotated data and a lexical resource using a Levenshtein distance with discounted weights

2We investigated the availability of this data, but did not receive access to it up to the time of writing.
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for frequently occurring errors. When several candidates are available, the most frequent correction
candidate is chosen as correction. The authors report an accuracy of 71% without the use of annotated
training data for the whole corpus and 73% for texts written by L2 learners with a model using training
data.

3 Evaluation data for L2 Swedish error correction

To evaluate the usefulness of word embeddings and similarity measures, we combined L2 Swedish
learner error data from two different sources: a corpus of learner essays and logged spelling exercises.
From the SweLL learner corpus (Volodina et al., 2016), we collected errors from 24 randomly sampled
essays between CEFR levels A1 – B1 from the SpIn sub-corpus. Learners’ native languages included
Romanian, Vietnamese, Somali, Tigrinya, Dari, Latvian, Thai, Mandarin Chinese, Kurdish, Swahili, Al-
banian and Arabic. During the manual error correction, each non-lemmatized token was analyzed and,
if they were errors, they were manually corrected. Only errors for which the intended token could be
unambiguously determined were included. Errors with capitalization, foreign words and containing @,
signaling unintelligible handwritten characters, were excluded.

Besides essays, we collected errors also from spelling exercise logs (SpellEx) from a Swedish language
learning platform, Lärka3. We collected non-word errors from the responses of the 10 language learners
(ranging from beginner to advanced level) who participated in a previous evaluation of the platform
(Pijetlovic, 2013; Volodina and Pijetlovic, 2015). Word segmentation errors and other errors consisting
of valid inflectional forms were not considered. The size of the dataset in terms of number of L2 errors
and their distribution across data sources and CEFR levels is presented in Table 1. Digits in parenthesis
for SpIn indicate the number of individual essays.

A1 A2 B1 Sub-total Total

SpIn 82 (8) 62 (9) 58 (7) 202 455SpellEx NA NA NA 253

Table 1: The number of corrected non-word L2 errors in the dataset.

It is worth noting that, while the spelling exercise log part of the data consisted mainly of L2 spelling
errors, the errors collected from the essays displayed a wider variety of error types including grammatical
and vocabulary errors. Duplicate pairs of error and intended word have been removed from the dataset,
thus the numbers in Table 1 refer to unique error types.

4 Word embeddings enhanced with character n-grams for learner error correction

In this work, we use FastText (Bojanowski et al., 2016) for training embeddings. FastText is a recently
proposed approach that enhances traditional word-based vectors by representing each word as a bag of
character n-grams. Incorporating this type of subword information, besides semantic relatedness, allows
for capturing also orthographic and morphological similarity.

We compare pre-trained word vectors4 using a large amount of Swedish Wikipedia articles with word
vectors we trained specifically for the purpose of finding L2 error correction candidates, which can be an
alternative (or a complement) to lexicon-based lookups. We base our embeddings on corpora which are
more similar to what L2 learners produce in terms of topic or complexity. These include a small set of
specialized corpora (SpecC) combining easy-to-read texts (Heimann Mühlenbock, 2013), L2 coursebook
texts (Volodina et al., 2014) and L2 learner essays (Volodina et al., 2016) We combine these with a large
amount of blog texts to ensure a sufficiently large lexical basis for our representations. The blog texts
were collected via the corpus query system, Korp5 (Borin et al., 2012). Compared to Wikipedia, the topic
of these blog texts is more similar to that of learner texts dealing often with everyday topics, which is part

3https://spraakbanken.gu.se/larka/
4https://fasttext.cc/docs/en/pretrained-vectors.html
5https://spraakbanken.gu.se/korp/
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of language learning curricula according to CEFR, especially between beginner (A1) and intermediate
levels (B1) (Council of Europe, 2001). Moreover, blog texts might contain misspellings, which, although
not necessarily produced by L2 speakers, can potentially increase the usefulness of this type of data for
detecting correction candidates for L2 errors.

The total number of tokens in the combination of corpora used for our embeddings was 25 million
tokens (8% being from SpecC), which resulted in a vocabulary size of 307,349 word forms. This is
a considerably smaller vocabulary size than that of the pre-trained Wikipedia embeddings consisting
of 1,143,273 word forms. The pre-trained embeddings were based on the skip-gram model and they
used the default parameters and 300 dimensions. We train embeddings using Continuous Bag-of-Words
model (CBOW) which can be used also to predict target words from the context (Mikolov et al., 2013).
We preserve most parameters with their default values, except for four exceptions. We set the number
of dimensions to 300 and we considered n-grams between 2 and 5 (instead of the default 3 and 6), in
attempt to better handle short words, which are common at lower proficiency levels. We also reduce the
minimum number of occurrences for a word to be included to 2 and add a duplicate copy of the small
amount of learner-written texts in the training data.

5 Phonological similarity based on Levenshtein distance

Levenshtein (edit) distance is a common measure of the difference between strings in terms of the mini-
mum number of single character edits required to map one string into another (Levenshtein, 1966). These
edits can consist of deletions, additions and substitutions. The traditional version of this measure makes
a binary decision about whether a pair of characters match. Some characters, however, are more likely to
be misspelled as certain characters than others. This can be either due to the frequent omission of highly
language-dependent diacritics or due to a similarity in the sound encoded by different graphemes. An
example for the former case is: traffas instead of träffas ‘meet’. To account for phonological differences,
we first train a grapheme-to-phoneme conversion system that can map a string (even if it contains errors)
to its phonological representation, which we describe in the next sub-section.

5.1 A neural grapheme-to-phone conversion for Swedish
Grapheme-to-phoneme (g2p) conversion is a task consisting of transforming the orthographical represen-
tation of words into their phonological equivalent. This is an important building block of, among others,
text-to-speech (TTS) applications. A number of approaches have been explored in the past to tackle this
conversion, which include both rule-based and data-driven methods. Torstensson (2002) presents a rule-
based approach to g2p conversion for a Swedish TTS system and reports a rate of correctly transcribed
words of 78% when testing on about 3700 unique words.

In this work, we train a g2p conversion system for Swedish based on a g2p toolkit6 available within
CMUSphinx (Yao and Zweig, 2015), an open source software mainly aiming at speech recognition.
This g2p toolkit uses TensorFlow (Abadi et al., 2016) and a transformer model7 relying on an attention
mechanism. The toolkit has been successfully applied by a number of large companies (Yao and Zweig,
2015). The advantage of this g2p system is that, as opposed to other approaches, it does not require
phoneme to grapheme alignments. Instead, mappings are learned directly from a list of words consisting
of pairs of orthographic and phonemic representations for each word.

We use the Swedish lexical database of the Nordisk språkteknologi holding AS (NST)8 to collect or-
thographic forms and their transcriptions encoded in Speech Assessment Methods Phonetic Alphabet
(SAMPA). Before feeding the transcriptions to the g2p system, we automatically segment them as the
example CMU dictionary for English. Length information is retained in the transcriptions, but we re-
move other non-phone related information (e.g. syllable and compound constituent boundaries). When
collecting information from the dictionary, we select only base forms that were assigned a Swedish lan-
guage code9 and that were not tagged as garbage entries or as acronyms. All orthographic forms are

6https://github.com/cmusphinx/g2p-seq2seq
7https://ai.googleblog.com/2017/06/accelerating-deep-learning-research.html
8https://www.nb.no/sprakbanken/show?serial=sbr-22
9The NST dictionary contains some non-Swedish entries from other languages.
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normalized to lower case and duplicates are removed, which results in a dataset consisting of 103,026
pairs of orthographic forms and their transcriptions.

We train a model with the default parameters using 90% of the extracted NST data and comparing two
different sizes for the hidden units (64 and 512). We then measure the performance of the system on
the held-out 10% (10,302) of the data in terms of accuracy and word error rate (WER). In Table 2, we
compare our results with those presented for English using the same implementation. As a baseline (BL)
for Swedish, we use the results reported in Torstensson (2002).

Swedish-BL Swedish English

# units NA 64 512 64 512

Accuracy (%) 78.3 82.6 86.6 68.7 76.7
WER (%) 21.7 17.4 13.4 31.3 23.3

Table 2: The performance of the Swedish g2p conversion system.

Our system outperforms considerably the previously reported results for Swedish for this task. More-
over, our neural models for Swedish achieve a higher accuracy than those for English with both 64 and
512 units. Besides some differences in the underlying data, this may be due to the fact that Swedish
orthography is closer to the pronounced forms of words.

5.2 Measuring distance between sounds based on binary phonological features
To be able to measure distance between sounds, we adopt the binary feature representation described in
Hayes (2009), where each phoneme is characterized across 26 dimensions divided into three categories:
manner, place and laryngeal features. For a detailed description of each feature and their value per
phoneme, see Hayes (2009).

Some peculiar sounds in Swedish that occur less commonly in other languages include retroflex sounds
(e.g. ú, ã) and the doubly articulated postalveolar-velar fricative (/Ê/). Since the latter was missing from
the phonemes listed in the feature charts from Hayes (2009), we deduced its values by combining the
features of the two sounds it is composed of according to IPA,10 namely /S/ and /x/.

5.3 From Levenshtein distance to a phonological similarity measure
We employ a memory efficient version of the Levenshtein distance (LD) using two row matrices.11 We
replace the original cost of 1 for non-matching characters with a value that expresses a phonological
similarity between two phonemes. The similarity is computed based on the phonological features of
these sounds. The cost for this phonological distance (PH-LD) is computed as the ratio of features
with matching values divided by the total number of features relevant for at least of the two sounds
being compared. In section 6, we report results for both the traditional version of LD and the proposed
phonological LD.

We transform both types of LD distances into a normalized similarity measure to make it more com-
parable with cosine similarity values. We compute orthographic similarity as 1− LD

Nchar
and phonological

similarity as 1 − PH−LD
Nphon

, where Nchar and Nphon stand for the number of characters and phonemes in
the word respectively.

6 Investigating the usefulness of similarity measures for L2 error correction

6.1 The efficiency of retrieving L2 error corrections based on cosine similarity
To start with, we evaluate the usefulness of word embeddings for retrieving the intended word for learner
errors. Table 3 shows the percentage of errors for which the correction appeared among a varying number

10https://www.internationalphoneticassociation.org/content/full-ipa-chart
11We used Christopher P. Matthews’ Python implementation available at https://en.wikibooks.org/wiki/

Algorithm_Implementation/Strings/Levenshtein_distance#Python
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of k most similar words.

SpecC+Blogs Wikipedia

Top k SpIn SpellEx Avg SpIn SpellEx Avg

10 40.6 50.2 45.4 18.8 24.5 21.65
25 49.0 57.3 53.15 24.8 28.1 26.45
50 59.4 63.2 61.3 28.7 31.6 30.15
100 64.4 66.4 65.4 31.2 34.4 32.8

Table 3: Percentage of corrections occurring among the k most similar words.

The word embeddings created specifically for L2 error correction purposes (SpecC+Blogs) based on
data relevant for the task proved to be considerably more useful for retrieving the intended word for
learner errors than the pre-trained Wikipedia embeddings. This task-specific embedding contained ap-
proximately twice more often (or more) the intended word than its counterpart at all levels of k. Fur-
thermore, word embeddings were more suitable for finding the correct alternative for the errors collected
from the spelling exercises even though words from the essay corpus were used as part of the training
data for the embeddings. This may be due to the fact that the errors in the essays include a higher per-
centage of grammatical errors besides spelling errors and embeddings enhanced with character n-grams
may be more useful for the latter type.

6.2 Relationship between similarity measures

In the next step, we compare the average value of each similarity measure in the two different sources of
L2 error data to investigate whether there is a difference in their usefulness.

CosSim OrthSim PhonSim

SpIn 0.683 (0.181) 0.773 (0.115) 0.904 (0.100)
SpellEx 0.747 (0.184) 0.773 (0.142) 0.918 (0.107)

Table 4: Mean and standard deviation values (in parenthesis) for different similarity measures.

As Table 4 shows, the mean values of all three similarity measures are higher for the SpellEx data,
containing mostly spelling errors. The similarity measures we investigate here seem therefore more
efficient for capturing the similarity with an intended word for spelling errors rather than for a variety of
different error types. Normalized phonological similarity values are, on average, higher than the values
of the other two similarity measures, but it is hard to draw conclusions from comparing directly the
average values per measure since they are computed differently.

To understand how much additional information the different similarity measures carry compared to
each other, we measure also the Spearman’s correlation (ρ) between them pairwise. We find that all three
similarity measures positively correlate12 with each other, but to a varying degree. Cosine similarity
correlates more with orthographic (ρ = 0.693) than with phonological similarity (ρ = 0.449). Word em-
beddings do indeed incorporate character n-grams which rely on the same type of information as the one
at the basis of orthographic similarity. Phonological similarity correlates less both with cosine and with
orthographic similarity (ρ = 0.449 and ρ = 0.472 respectively). Some types of errors produce, in fact,
an orthographic dissimilarity, but not a phonological one. These include errors with double consonants
and different graphemes mapping to the same phoneme. In Table 5, we provide some examples for pairs
of words with orthographic and phonological forms to illustrate these cases. (Phonological LD values,
omitted from the table are 0 in all cases.)

12For all correlations ρ =< 0.001 holds.
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Error Correction Translation LD Type of error

Orth Phon Orth Phon

bettre b E t r e bättre b E t r e ‘better’ 1 wrong grapheme
tjeck s’ E k check s’ E k ‘check’ 2 wrong grapheme

fortsäta f U t‘ s‘ E: t a fortsätta f U t‘ s‘ E: t a ‘continue’ 1 consonant doubling

Table 5: Examples of errors producing orthographic, but not phonological distance.

As we showed in this section, phonological similarity has the potential to provide useful additional
information when compared to the other two similarity measures. In the next sub-section, we investigate
whether combining orthographic and phonological similarity improves the cosine similarity-based rank
of an intended word for L2 errors.

6.3 The efficiency of the combination of different similarity measures

When using similarity measures for error correction purposes, a commonly adopted option is to choose
the correction candidate that maximizes the different types of similarities, see e.g. Bertaglia and Nunes
(2016). In this section, we investigate whether adding orthographic and phonological similarity can
improve the initial, cosine similarity-based rank of an L2 error correction. We consider only those errors
here for which the correction appeared among the 50 most similar words in the word embeddings trained
on the combination of specialized corpora and blog texts. These errors were 280 in total from the two
data sources. Table 6 presents the average ranks of the corrections and their standard deviation based on
cosine similarity and their combination with the other measures. (A lower rank indicates a higher degree
of similarity.)

CosSim CosSim+OrthSim CosSim+PhonSim CosSim+OrthSim+PhonSim

SpIn 6.91 (10.1) 1.95 (1.71) 2.32 (3.23) 2.61 (3.83)
SpellEx 10.83 (12.99) 2.82 (3.40) 3.54 (5.15) 1.62 (1.54)

Table 6: Average ranks per similarity measures.

On average, the best ranking was obtained by the combination of cosine and orthographic similarity for
the essay errors from SpIn. For the spelling errors, however, incorporating also phonological information
achieved the best results in terms of average ranks.

In the last set of experiments, we explore how often combining cosine similarity with orthographic
and phonological similarity improved, worsened or had no impact on the cosine similarity-based ranking
of the corrections. Table 7 presents the percentage of errors for each of these three types of effects per
similarity measure combination. We find that combining cosine similarity with orthographic or phono-
logical similarity boosts the ranking of the corrections in more that half of the cases. The results from
Table 7 confirm the ones from Table 6: adding phonological similarity information boosts the ranks of
corrections only for the spelling error data, but not for the mixed type of L2 errors from SpIn. Moreover,
relying on more than one similarity measure seems to be more beneficial for the wider spectrum of errors
occurring in learner essays (SpIn) where measure combinations yielded an improvement in ranking on
average for ca. 10% more of the errors than for SpellEx.

7 Conclusion

In this paper, we explored different similarity measures and their interaction for the purposes of cor-
recting errors made by language learners. We presented word vectors created for this purpose using
task-relevant corpora which proved to be more efficient for retrieving corrections than pre-trained em-
beddings based on Wikipedia. Since almost 4 out of 10 times the correction did not appear among
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Improvement No change Drop

CosSim+OrthSim
SpIn 64.86 27.02 8.10

SpellEx 48.99 44.96 6.04

CosSim+PhonSim
SpIn 61.26 22.52 16.21

SpellEx 52.34 34.89 12.75

CosSim+OrthSim+PhonSim
SpIn 63.06 27.02 9.90

SpellEx 53.02 39.59 7.38

Table 7: Effect of combining similarity measures.

the most similar words in the word embeddings, dictionary lookups for candidates within a certain edit
distance would be a useful complement.

Furthermore, we trained a neural g2p system for computing phonological similarity between tran-
scribed errors and their corrections which outperformed previously reported results targeting this task
for Swedish. Although based on a similar type of information, complementing cosine similarity with or-
thographic similarity yielded considerable improvements for the ranking of corrections for a varied type
of L2 errors found in essays. Adding phonological similarity information to cosine similarity, on the
other hand, proved more useful for data containing spelling errors. The similarity measures described
can be easily re-used for other languages with the availability of a lexicon with pairs of orthographic
forms and their phonological transcription and by complementing the list of sounds and their phonolog-
ical features with any potentially missing language-specific sound. The trained word embeddings, the
Swedish g2p system and the implementation of the phonological similarity measure have been made
publicly available to foster code reuse and replicability.

Future work could explore additional methods for both the retrieval of correction candidates for L2
errors and for ranking them. These could include, among others, language models, diacritical symmetry
and a longest common subsequence measure. Moreover, the usefulness of the measures described could
be investigated further with additional evaluation data both for Swedish and for other languages.
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Niklas Torstensson. 2002. Grapheme-to-phoneme conversion, a knowledge-based approach. Speech Music and
Hearing TMH-QPSR-Fonetik, 44:117–120.

Elena Volodina and Dijana Pijetlovic. 2015. Lark trills for language drills: Text-to-speech technology for lan-
guage learners. In Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational
Applications, pages 107–117.
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