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Abstract

Automatic geolocation of microblog posts
from their text content is particularly diffi-
cult because many location-indicative terms
are rare terms, notably entity names such as
locations, people or local organisations. Their
low frequency means that key terms observed
in testing are often unseen in training, such
that standard classifiers are unable to learn
weights for them. We propose a method
for reasoning over such terms using a knowl-
edge base, through exploiting their relations
with other entities. Our technique uses a
graph embedding over the knowledge base,
which we couple with a text representation to
learn a geolocation classifier, trained end-to-
end. We show that our method improves over
purely text-based methods, which we ascribe
to more robust treatment of low-count and out-
of-vocabulary entities.

1 Introduction

Twitter has been used in diverse applications such
as disaster monitoring (Ashktorab et al., 2014;
Mizuno et al., 2016), news material gathering
(Vosecky et al., 2013; Hayashi et al., 2015), and
stock market prediction (Mittal and Goel, 2012; Si
et al., 2013). In many of these applications, geolo-
cation information plays an important role. How-
ever, less than 1% of Twitter users enable GPS-
based geotagging, so third-party service providers
require methods to automatically predict geoloca-
tion from text, profile and network information.
This has motivated many studies on estimating ge-
olocation using Twitter data (Han et al., 2014).

Approaches to Twitter geolocation can be clas-
sified into text-based and network-based meth-
ods. Text-based methods are based on the text
content of tweets (possibly in addition to textual
user metadata), while network-based methods use
relations between users, such as user mentions,
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follower–followee links, or retweets. In this pa-
per, we propose a text-based geolocation method
which takes a set of tweets from a given user as
input, performs named entity linking relative to a
static knowledge base (“KB”), and jointly embeds
the text of the tweets with concepts linked from
the tweets, to use as the basis for classifying the
location of the user. Figure 1 presents an overview
of our method. The hypothesis underlying this re-
search is that KBs contain valuable geolocation in-
formation, and that this can complement pure text-
based methods. While others have observed that
KBs have utility for geolocation tasks (Brunsting
et al., 2016; Salehi et al., 2017), this is the first
attempt to combine a large-scale KB with a text-
based method for user geolocation.

The method we use to generate concept embed-
dings from a given KB is applied to all nodes in
the KB, as part of the end-to-end training of our
model. This has the advantage that it generates
KB embeddings for all nodes in the graph associ-
ated with a given relation set, meaning that it is
applicable to a large number of concepts in the
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KB, including the large number of NEs that are
unattested in the training data. This is the pri-
mary advantage of our method over generating
text embeddings for the named entity (“NE”) to-
kens, which would only be applicable to NEs at-
tested in the training data.

Our contributions are as follows: (1) we pro-
pose a joint knowledge-based neural network
model for Twitter user geolocation, that outper-
forms conventional text-based user geolocation;
and (2) we show that our method works well even
if the accuracy of the NE recognition is low —
a common situation with Twitter, because many
posts are written colloquially, without capitaliza-
tion for proper names, and with non-standard syn-
tax (Baldwin et al., 2013, 2015).

2 Related Work

2.1 Text-based methods

Text-based geolocation methods use text features
to estimate geolocation. Unsupervised topic mod-
eling approaches (Eisenstein et al., 2010; Hong
et al., 2012; Ahmed et al., 2013) are one success-
ful approach in text-based geolocation estimation,
although they tend not to scale to larger data sets.
It is also possible to use semi-supervised learning
over gazetteers (Lieberman et al., 2010; Quercini
et al., 2010), whereby gazetted terms are identified
and used to construct a distribution over possible
locations, and clustering or similar methods are
then used to disambiguate over this distribution.
More recent data-driven approaches extend this
idea to automatically learn a gazetteer-like dictio-
nary based on semi-supervised sparse-coding (Cha
et al., 2015).

Supervised approaches tend to be based on bag-
of-words modelling of the text, in combination
with a machine learning method such as hierarchi-
cal logistic regression (Wing and Baldridge, 2014)
or a neural network with denoising autoencoder
(Liu and Inkpen, 2015). Han et al. (2012) fo-
cused on explicitly identifying “location indicative
words” using multinomial naive Bayes and logis-
tic regression classifiers combined with feature se-
lection methods, while Rahimi et al. (2015b) ex-
tended this work using multi-level regularisation
and a multi-layer perceptron architecture (Rahimi
et al., 2017b).

2.2 Network-based methods

Twitter, as a social media platform, supports a
number of different modalities for interacting with
other users, such as mentioning another user in the
body of a tweet, retweeting the message of another
user, or following another user. If we consider the
users of the platform as nodes in a graph, these
define edges in the graph, opening the way for
network-based methods to estimate geolocation.

The simplest and most common network-based
approach is label propagation (Jurgens, 2013;
Compton et al., 2014; Rahimi et al., 2015b), or re-
lated methods such as modified adsorption (Taluk-
dar and Crammer, 2009; Rahimi et al., 2015a).

Network-based methods are often combined
with text-based methods, with the simplest meth-
ods being independently trained and combined
through methods such as classifier combination,
or the integration of text-based predictions into the
network to act as priors on individual nodes (Han
et al., 2016; Rahimi et al., 2017a). More recent
work has proposed methods for jointly training
combined text- and network-based models (Miura
et al., 2017; Do et al., 2017; Rahimi et al., 2018).

Generally speaking, network-based methods are
empirically superior to text-based methods over
the same data set, but don’t scale as well to larger
data sets (Rahimi et al., 2015a).

2.3 Graph Convolutional Networks

Graph convolutional networks (“GCNs”) —
which we use for embedding the KB of named en-
tities — have been attracting attention in the re-
search community of late, as an approach to “em-
bedding” the structure of a graph, in domains rang-
ing from image recognition (Bruna et al., 2014;
Defferrard et al., 2016), to molecular footprint-
ing (Duvenaud et al., 2015) and quantum structure
learning (Gilmer et al., 2017). Relational graph
convolutional networks (“R-GCNs”: Schlichtkrull
et al. (2017)) are a simple implementation of a
graph convolutional network, where a weight ma-
trix is constructed for each channel, and combined
via a normalised sum to generate an embedding.
Kipf and Welling (2016) adapted graph convo-
lutional networks for text based on a layer-wise
propagation rule.

3 Methods

In this paper, we use the following notation to de-
scribe the methods: U is the set of users in the
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Figure 2: Our proposed method expands input entities using a KB, then entities are fed into input layers along
with their relation names and directions. The vectors that are obtained from the input layers are combined via a
weighted sum. The text associated with a user is also embedded, and a combined representation is generated based
on average pooling with the entity embedding.

data set, E is the set of entities in the KB,R is the
set of relations in the KB, T is the set of terms in
the data set (the “vocabulary”), V is the union of
the U and T (V = U ∪ T ), and d is the size of
dimension for embedding.

Our method consists of two components: a text
encoding, and a region prediction. We describe
each component below.

3.1 Text encoding
To learn a vector representation of the text associ-
ated with a user, we use a method inspired by rela-
tional graph convolutional networks (Schlichtkrull
et al., 2017).

Our proposed method is illustrated in Figure 2.
Each channel in the encoding corresponds to a
directed relation, and these channels are used to
propagate information about the entity. For in-
stance, the channel for (bornIn, BACKWARDS)
can be used to identify all individuals born in a
given location, which could provide a useful sig-
nal, e.g., to find synonymous or overlapping re-
gions in the data set. Our text encoding method
is based on embedding the properties of each en-
tity based on its representation in the KB, and its
neighbouring entities.

Consider Tweets that user posted containing n
entity mentions {e1, e2, ..., en}, each of which is
contained in a KB, ei ∈ E. The vectormeir ∈ 1|d|

represents the entity ei based on the set of other

entities connected through directed relation r, i.e.,

meir =
∑

e′∈Nr(ei)

W
(1)
e′ , (1)

where, W (1)
e′ ∈ 1d is the embedding of entity e′

from embedding matrix W (1) ∈ R
|V |×d , and

Nr(e) is the neighbourhood function, which re-
turns all nodes e′ connected to e by directed re-
lation r.

Then, meir for all r are transformed using a
weighted sum:

vei =
∑
r∈R

air ReLU(meir)

~ai = σ(W (2) · ~ei) ,
(2)

where, ~ai ∈ 1|R| is the attention that entity ei rep-
resented by one-hot vector ~ei pays to all relations
using weight matrix W (2) ∈ R|V |×|R|, and σ and
ReLU are the sigmoid and the rectified linear unit
activation functions, respectively. Here, we obtain
entity embedding vector vei ∈ 1d for entity ei.

Since the number of entities in tweets is sparse,
we also encode, and use all the terms in the tweet
regardless of if they are entity or not. We represent
each term by:

vwj =W (1) · ~wj , (3)

where ~wj is a one-hot vector of size |V | where the
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value j equals frequency of wj in the tweet, and
W (1) is shared with entities (Equation 1).1

Overall, user representation vector u is obtained
as follows:

u =
1

n+m

 n∑
i=1

vei +

m∑
j=1

vwj

 , (4)

wherem is the number of words that the user men-
tioned.

Our method has two special features: sharing
the weight matrix across all channels, and using a
weighted sum to combine vectors from each chan-
nel; these distinguish our method from R-GCN
(Schlichtkrull et al., 2017). The reason we share
the embedding matrix is that the meaning of the
entity should be the same even if the relation type
is different, so we consider that the embedding
vector should be the same irrespective of relation
type. We adopt weighted sum because even if the
meaning of the entity is the same, if the entity
is connected via different relation types, its func-
tional semantics should be customized to the par-
ticular relation type.

3.2 Region estimation
To estimate the location for a given user, we pre-
dict a region using a 1-layer feed-forward neural
network with a classification output layer as fol-
lows:

o = softmaxW (3)u , (5)

where W (3) ∈ Rclass×d is a weight matrix. The
classes represent regions in the data set, defined
using k-means clustering over the continuous lo-
cation coordinations in the training set (Rahimi
et al., 2017a). Each class is represented by the
mean latitude and longitude of users belonging to
that class, which forms the output of the model.
The model is trained using categorical cross-
entropy loss, using the Adam optimizer (Kingma
and Ba, 2014) with gradient back-propagation.

4 Experiments

4.1 Evaluation
Geolocation models are conventionally evaluated
based on the distance (in km) between the known
and predicted locations. Following Cheng et al.
(2010) and Eisenstein et al. (2010), we use three
evaluation measures:

1 We consider words as a special case of entities, having
no relations.

1. Mean: the mean of distance error (in km) for
all test users.

2. Median: the median of distance error (in km)
for all test users; this is less sensitive to large-
valued outliers than Mean.

3. Acc@161: the accuracy of geolocating a test
user within 161km (= 100 miles) of their real
location, which is an indicator of whether the
model has correctly predicted the metropoli-
tan area a user is based in.

Note that lower numbers are better for Mean and
Median, while higher is better for Acc@161.

4.2 Data set and settings
We base our experiments on GeoText (Eisenstein
et al., 2010), a Twitter data set focusing on the
contiguous states of the USA, which has been
widely used in geolocation research. The data set
contains approximately 6,500 training users, and
2,000 users each for development and test. Each
user has a latitude and longitude coordinate, which
we use for training and evaluation. We exclude @-
mentions, and filter out words used by fewer than
10 users in the training set.

We use Yago3 (Mahdisoltani et al., 2014) as our
knowledge base in all experiments. Yago3 con-
tains more than 12M relation edges, with around
4.2M unique entities and 37 relation types. We
compare three relation sets:

1. GEORELATIONS: {isLocatedIn, livesIn,
diedIn, happenedIn, wasBornIn }

2. TOP-5 RELATIONS: {isCitizenOf, hasGen-
der, isAffiliatedTo, playsFor, creates }

3. GEO+TOP-5 RELATIONS: Combined GEO-
RELATIONS and TOP-5 RELATIONS

The first of these was selected based on rela-
tions with an explicit, fine-grained location com-
ponent,2 while the second is the top-5 relations in
Yago3 based on edge count.

We use AIDA (Nguyen et al., 2014) as our
named entity recognizer and linker for Yago3.

The hyperparameters used were: a minibatch
size of 10 for our method, and full batch for R-
GCN methods mentioned in the following section;

2Granted isCitizenOf is also geospatially relevant, but re-
call that our data set comprises a single country (the USA),
so there was little expectation that it would benefit our model
in this specific experimental scenario.
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each component, text encoding and region estima-
tion, has one layer; 32 regions; L2 regularization
coefficient of 10−5; hidden layer size of 896; and
50 training iterations, with early stopping based on
development performance.

All models were learned with the Adam opti-
miser (Kingma and Ba, 2014), based on categori-
cal cross-entropy loss with channel weights Wc =
|cmax|
|c| , where |c| is the number of entities of class

type c appearing in the training data, and |cmax| is
that of the most-frequent class. Each layer is ini-
tialized using HENormal (He et al., 2015), and all
models were implemented in Chainer (Tokui et al.,
2015).

4.3 Baseline Methods
We compare our method with two baseline meth-
ods: (1) the proposed method without weighted
sum; and (2) an R-GCN baseline, over the same
sets of relations as our proposed method. Both
methods expand entities using the KB, which
helps handle low-frequency and out-of-vocabulary
(OOV) entities. Figure 3 illustrates the difference
between the proposed and two baseline methods.
The difference between these methods is only in
the text encoding part. We describe these baseline
methods in detail below.

Proposed Method without Weighted Sum
(“simple average”’): To confirm the effect of
the weighted sum in the proposed method, we use
the proposed method without weighted sum as one
of our baselines. Here, we use ar = 1

|Nr(ei)| in-
stead of air in Equation 2.

R-GCN baseline method (R-GCN): The R-
GCNs we use are based on the method of
Schlichtkrull et al. (2017). The differences are in
having a weight matrix for each channel, and us-
ing non-weighted sum.

4.4 Results
Table 1 presents the results for our method, which
we compare with three benchmark text-based user
geolocation models from the literature (Cha et al.,
2015; Rahimi et al., 2015b, 2017b). We present
results separately for the three relation sets,3 un-
der the following settings: (1) implemented within
our proposed method, (2) the proposed method

3Note that GEORELATIONS and TOP-5 RELATIONS in-
clude five relation types, while GEO+TOP-5 RELATIONS in-
cludes 10 relation types, so it is not fair between three rela-
tion sets.

(1)Proposed Method

(3)R-GCN-based baseline

KB NN

Vector

Vector

Vector

Vector

Each 
relation

Weighted 
sum

NE 
Vector

NEs

KB

NN Vector

Vector

Vector

Vector

Each 
relation

sum
NE 

Vector
NEs

NN

NN

NN

(2)Proposed Method without weighted sum

KB NN

Vector

Vector

Vector

Vector

Each 
relation

sum
NE 

Vector
NEs

Figure 3: The difference between the proposed and
two baseline methods. The proposed method shares the
weight matrix between the different channels. The first
baseline is almost the same as the proposed method,
with the only difference being that a simple sum is used
instead of a weighted sum. The R-GCN baseline learns
a separate weight matrix for each channel.

without weighted sum; and (3) R-GCN baseline
method.

The best results are achieved with our pro-
posed method using the GEO+TOP-5 RELA-
TIONS, in terms of both Acc@161 and Me-
dian. The second-best results across these metrics
are achieved using our proposed method without
weighted sum using GEO+TOP-5 RELATIONS,
and the third-best results are for our proposed
method using GEORELATIONS. Surprisingly, R-
GCN baseline methods perform worse that the
benchmark methods in terms of Acc@161 and
Median. No method outperforms Cha et al.
(2015) in terms of Mean, suggesting that this
method produces the least high-value outlier pre-
dictions overall; we do not report Acc@161 for
this method as it was not presented in the original
paper.

4.5 Discussion

Our proposed method is able to estimate the geolo-
cation of Twitter users with higher accuracy than
pure text-based methods. One reason is that our
method is able to handle OOV entities if those en-
tities are related to training entities. Perhaps un-
surprisingly, it was the fine-grained, geolocation-
specific relation set (GEORELATIONS) that per-
formed better than general-purpose set (TOP-
5 RELATIONS), but it is important to observe
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Relation set Method Acc@161↑ Mean↓ Median↓

GEORELATIONS

Proposed method 43 780 339
without weighted sum 41 838 349
R-GCN 41 859 373

TOP-5 RELATIONS

Proposed method 41 807 354
without weighted sum 42 852 342
R-GCN 41 898 452

GEO+TOP-5 RELATIONS

Proposed method 44 821 325
without weighted sum 43 825 325
R-GCN 41 914 449
Cha et al. (2015) — 581 425
Rahimi et al. (2015b) 38 880 397
Rahimi et al. (2017b) 40 856 380

Table 1: Geolocation prediction results (“—” indicates that no result was published for the given combination of
benchmark method and evaluation metric).

Used relation Acc@161↑ Mean↓ Median↓ Number of edges in Yago3

MLP (without relations) 40 856 380 —
+isLocatedIn 43 793 321 3,074,176
+livesIn 42 836 347 71,147
+diedIn 43 844 346 257,880
+happenedIn 43 831 328 47,675
+wasBornIn 42 821 328 848,846
+isCitizenOf 42 825 347 2,141,725
+hasGender 43 824 338 1,972,842
+isAffiliatedTo 42 832 352 1,204,540
+playsFor 43 807 322 783,254
+create 41 880 358 485,392

Table 2: Effect of each relation type.

that this is despite them being more sparsely-
distributed in Yago3, and also that a more general-
purpose set of relations also resulted in higher ac-
curacy. The combination of geolocation-specific
and general-purpose set (GEO+TOP-5 RELA-
TIONS) is the best result in the table, but the im-
provement from using only GEORELATIONS is
limited. That is, even though our method works
with general-purpose relation set, it is better to
choose task-specific relations.

To confirm which relations have the greatest
utility for user geolocation, we conducted an ex-
periment based on using one relation at a time.
As detailed in Table 2, relations that are better
represented in Yago3 such as isLocatedIn and
playsFor have a greater impact on results, in part
because this supports greater generalization over
OOV entities. Having said this, the relation which

has the least edges, happenedIn, has the highest
impact on results in term of Acc@161 and the
third impact in terms of Mean and Median show-
ing that it is not just the density of a relation that is
a determinant of its impact. Surprisingly, the over-
all best result in terms of Median, which includes
using relation sets such as GEORELATIONS and
GEO+TOP-5 RELATIONS, is obtained by with is-
LocatedIn only, despite it being a single relation.
This result also shows that choosing task-specific
relations is one of the important features in our
method.

Even though the R-GCN baseline is closely
related to our method, the results were worse.
The reason for this is that it has an individual
weight matrix for each channel, which means
that it has more parameters to learn than our
proposed method. To confirm the effect of the
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number of parameters, we conducted an experi-
ment comparing the Median error as we changed
the number of units in the middle layer in the
range {112, 224, 448, 672, 896} for our proposed
method and the R-GCN baseline method. As
shown in Figure 4, the Median error of the R-
GCN baseline method is almost equal when the
number of units is between 224 and 896, at a level
worse than our proposed method. This result sug-
gests that the R-GCN baseline method cannot be
improved by simply reducing the number of pa-
rameters. This is because the amount of train-
ing data is imbalanced for each channel, so some
channels do not train well over small data sets.
With larger data sets, it is likely that the R-GCN
baseline would perform better, which we leave to
future work.

We also analyzed the results across test users
with differing numbers of tweets in the data set,
as detailed in Figure 5, broken down into bins
of 20 tweets (from 40 tweets; note that the min-
imum number of tweets for a given user in the
data set is 20). “Proposed” refers to our proposed
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Figure 6: Breakdown of results according to number of
entities per user, in terms of Median error.

method using GEORELATIONS, and “BoW” refers
to the bag-of-words MLP method of Rahimi et al.
(2017b). We can see that our method is superior
for users with small numbers of tweets, indicating
that it generalizes better from sparse data. This
suggests that our method is particularly relevant
for small-data scenarios, which are prevalent on
Twitter in a real-time scenario.

Figure 6 shows the results across test users with
differing numbers of entities in the data set. Our
method can improve for all cases, even users who
do not mention any entities. This is because our
method shares the same weight matrix for entity
and word embeddings, meaning it is optimized for
both. On the other hand, the median error for users
who mention over 10 entities is high. Most of their
tweets mention sports events, and they typically
include more than two geospatially-grounded en-
tities. For example, Lakers @ Bobcats has two en-
tities — Lakers and Bobcats — both of which are
basketball teams, but their hometown is different
(Los Angeles, CA for Lakers and Charlotte, NC
for Bobcats). Therefore, users who mention many
entities are difficult to geolocate.

Tweets are written in colloquial style, making
NER difficult. For this reason, it is highly likely
that there is noise in the output of AIDA, our NE
recognizer. To investigate the tension between
precision and recall of NE recognition and linking,
we conducted an experiment using simple case-
insensitive longest string match against Yago3 as
our NE recognizer, which we would expect to
have higher recall but lower precision than AIDA.
Table 3 shows the results, based on GEORELA-
TIONS. We see that AIDA has a slight advantage
in terms of Acc@161 and Mean, but that longest
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Method Acc@161↑ Mean↓ Median↓ Entities / User

AIDA 43 780 339 1.6
Longest string match 42 827 325 87.9

Table 3: Result for different named entity recognizers.

string match is superior in terms of Median de-
spite its simplicity. Given its efficiency, and there
being no need to train the model, this potentially
has applications when porting the method to new
KBs or applying it in a real-time scenario.

5 Conclusion and Future Work

In this paper, we proposed a user geolocation pre-
diction method based on entity linking and em-
bedding a knowledge base, and confirmed the ef-
fectiveness of our method through evaluation over
the GeoText data set. Our method outperformed
conventional text-based geolocation, in terms of
Acc@161 and Median, due to its ability to gen-
eralize over OOV named entities, which was seen
particularly for users with smaller numbers of
tweets. We also showed that our method is not re-
liant on a pre-trained named entity recognizer, and
that the selection of relations has an impact on the
results of the method.

In future work, we plan to combine our method
with user mention-based network methods, and
to confirm the effectiveness of our method over
larger-sized data sets.
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