
Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 368–376
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64035

Alibaba’s Neural Machine Translation Systems for WMT18

Yongchao Deng∗ Shanbo Cheng∗ Jun Lu∗ Kai Song∗ Jingang Wang∗ Shenglan Wu∗

Liang Yao∗ Guchun Zhang∗ Haibo Zhang∗ Pei Zhang∗ Changfeng Zhu∗

Boxing Chen

Machine Intelligence Technology Lab, Alibaba Group
{yongchao.dyc,shanbo.csb,jeolu.luj,songkai.sk,jingang.wjg,shenglan.wsl,

yaoliang.yl,guchun.zgc,zhanhui.zhb,xiaoyi.zp,changfeng.zcf,
boxing.cbx}@alibaba-inc.com

Abstract

This paper describes the submission systems
of Alibaba for WMT18 shared news transla-
tion task. We participated in 5 translation di-
rections including English↔ Russian, English
↔ Turkish in both directions and English →
Chinese. Our systems are based on Google’s
Transformer model architecture, into which
we integrated the most recent features from the
academic research. We also employed most
techniques that have been proven effective dur-
ing the past WMT years, such as BPE, back
translation, data selection, model ensembling
and reranking, at industrial scale. For some
morphologically-rich languages, we also in-
corporated linguistic knowledge into our neu-
ral network. For the translation tasks in which
we have participated, our resulting systems
achieved the best case sensitive BLEU score in
all 5 directions. Notably, our English→ Rus-
sian system outperformed the second reranked
system by 5 BLEU score.

1 Introduction

We participated in the WMT18 shared news trans-
lation task in 3 different language pairs: English
↔ Russian, English ↔ Turkish and English →
Chinese. English↔ Russian is a traditional WMT
language pair possessing a large amount of bilin-
gual training and development data. And espe-
cially this year, 16 million new translation units
are available for the training. However for some
more recent language pairs, the situation of bilin-
gual resources is less promising: English↔ Turk-
ish language pair only has 200 K bitexts and for
English → Chinese, the amount of bilingual re-
sources remains the same as last year. In the fol-
lowing sections of this article, We will see that
the availability of bilingual resources can differ-
entiate the performance of the final system. More

∗ Equal contribution

precisely, more bilingual data means greater abil-
ity to interact and absorb target side monolingual
knowledge through the process of back transla-
tion, as well as its ability to retrieve the pertinent
in-domain data during the data selection process.

We share a very similar model architecture and
training flow for different languages directions.
Our models are based on the Google’s Trans-
former architecture (Vaswani et al., 2017). In or-
der to improve our single system’s performance,
we experiment with some latest research findings
such as transformer with relative position attention
(Shaw et al., 2018), weighted transformer (Ahmed
et al., 2017) and neural suffix prediction for Rus-
sian (Song et al., 2018) which will be developed
in the next section. We will also see that different
well-known multi-system based techniques such
as model ensembling and model reranking can still
improve the performance of a very strong single
system, even though we have to push further the
limit in term of the number of models to employ
as well as the methods to combine them together.

The paper is structured as follows: Section 2
will describe the novelties of our model archi-
tecture compared to the Google’s standard Trans-
former framework, then we present a detailed
overview of our system in Section 3, before giving
the experimental settings and main results across
languages in Section 4. Finally, Section 5 will
draw a brief conclusion of our work for WMT18.

2 Model Features

We describe in this section three different archi-
tecture enhancements that we do to the standard
Transformer architecture, two of them come from
the latest research work on Transformer, the third
one is from our internal research group. They
all, to a certain extent, help improve the base-
line model, but the improvement is not consistent

368

https://doi.org/10.18653/v1/W18-64035

across all languages and it becomes progressively
weaker, diluted in the combination of other tech-
niques.

2.1 Transformer with Relative Position
Attention

We use relative position representation in self-
attention mechanism (Shaw et al., 2018) of both
the encoder and decoder side for all systems. Orig-
inally, the Transformer only uses the absolute po-
sition information in the word embedding layer,
lacking of position information in higher layers.
Incorporating explicit relative position informa-
tion in self-attention enables its propagation to the
higher layers. And in contrast to the absolute po-
sition, it’s invariant to the sentence length. We
compared the translation results between whether
using this feature or not, and found that with the
relative position features, the model performs bet-
ter in reordering. We also implement the relative
position representation with fast decoding. Exper-
iments showed that it lead to faster convergence
and better performance.

2.2 Weighted Transformer

Motivation: The Transformer Model proposed
by Vaswani et al. (2017), uses a self-attention
mechanism to avoid recurrence and convolution
in previously proposed models. The heads in
the multi-head attention are independent of each
other, Ahmed et al. (2017) improved this with a
new mechanism, namely multi-branch attention.
The latter adds a group of dynamic learned param-
eters to distinguish the importance of the heads.

Our Implementation: We implement the
weighted transformer, with extra small improve-
ments compared to the original implementation.
We introduce the weighting mechanism to both
encoder and the bottom layer of multi-head at-
tention in decoder which does not accept encoder
output states. The reason we do not add in the
upper layer of multi-head attention is that it causes
about 3 times slower of training speed.

2.3 Neural Suffix Prediction for Russian

For English to Russian task, we implement Song
et al. (2018) ’s work, namely neural suffix predic-
tion, in our baseline system. Song et al. (2018) ’s
work takes a two-step approach for the decoder.
Russian word sequence is split into stem sequence
and suffix sequence. During the decoding time,

stem is first generated at each decoding step, be-
fore suffix is predicted. Due to limited resource,
we didn’t strictly evaluate the actual improvement
of this method, compared with the baseline Trans-
former architecture. We directly use it as our base-
line system. For the following part of this paper,
our English to Russian model is with neural suffix
prediction by default. We use Byte Pair Encoding
(BPE) (Sennrich et al., 2015) to get subword se-
quence of English side. For Russian side, BPE is
applied on the stem sequence.

3 System Overview

3.1 Large-scale Back Translation

Adding synthetic data through the process of back
translation (Sennrich et al., 2016) has become the
paradigm when building state-of-the-art NMT sys-
tems. especially when a large amount of target-
side in-domain data is available. For low-resource
languages, the use of back-translated monolingual
data is crucial as the target side lexicon cover-
age is often insufficient, it is the case for English
↔ Turkish, with only 0.2M bilingual sentence
pairs and Turkish being a very morphologically-
rich language.

Considering the abundant volume of the mono-
lingual data provided by the organizers and the
costful process of back translation, we need to se-
lect among the entire monolingual data those of
quality and being close to our domain of interest.
We use the methods described in the data selection
section (Subsection 3.2) to select this in-domain
data from the large monolingual data.

Then comes the question of how many back
translated data should be used. Our experiments
showed that it’s difficult to have an universal
recipe for all languages across all tasks, we had to
experimentally tune the amount of synthetic data
to use according to the specific task, even for the
two directions within the same language pair (See
Table 1 for more details).

For different translation tasks, we use synthetic
data ranging from 5 million to 70 million in com-
bination with the provided parallel corpus to train
the NMT system, resulting in an increase of +3 to
+7 BLEU point over our baseline systems.

In order to understand the effectiveness of the
large-scale back translation, we give a simple anal-
ysis using the example of English → Russian.
A big Russian language model using 96 million
monolingual data (All-96M-LM) is trained for this

369

authentic synthetic (critical) synthetic (upper bound tested)
EN→ RU 8M 8M 24M
RU→ EN 30M 70M 85M
EN→ TR 0.2M 6M 14M
TR→ EN 0.2M 10M 15M
EN→ ZH 7.2M 3.98M 10M

Table 1: Synthetic data usage. Authentic: the amount
of authentic parallel data after cleaning; Synthetic
(critical): the maximal amount of synthetic data added
to the parallel data with improvement; Synthetic (up-
per bound tested): the maximal amount of synthetic
data tested

baseline translation translation with BT reference translation
(BLEU 36.66) (BLEU 38.94)

All-96M-LM 206.35 203.07 197.95
NoUN-80M-LM 204.72 199.83 194.83

Table 2: Perplexity analysis of the effect of back trans-
lation with English→ Russian examples

purpose, then 3 different translations of the new-
stest2017 test set are evaluated in term of perplex-
ity over this language model, the results are shown
in the Table 2. We can see that the translation
produced by a model using back translation has
a lower perplexity than the one without using it,
and an increase of +2.3 BLEU is observed accord-
ingly. This means that with the extra target side in-
domain data, the model can learn to produce more
fluent translation.

Similar observations can be obtained using a
different language model (NoUN-80M-LM), we
can notice that without the UN data, the same
translations have lower perplexity, as the UN do-
main is a different domain than the news one,
that’s also in line with the BLEU score increase
when training without the UN corpora in the En-
glish → Russian experiment results (See Subsec-
tion 4.2).

3.2 Fine-tuning with In-domain Data

Fine-tuning is a common method for domain adap-
tion in NMT, which has proven effective for boost-
ing the translation quality in a specific domain.
Following Luong and Manning (2015), we first
train a model on a large out-of-domain corpus and
then continue a few epochs only on a small in-
domain corpus. In our work, we try two different
approaches to select the small in-domain corpus,
namely, n-grams and binary classification.

N-grams: In order to acquire high-quality in-
domain data, we exploit the algorithm detailed in
Duh et al. (2013); Axelrod et al. (2011), which

aims at selecting sentence pairs from large out-
domain corpus that are similar to the target do-
main. In our experiment, the parallel bi-texts and
monolingual back-translation corpus are used as
out-domain corpus O. While all available newstest
sets are regarded as in-domain corpus I . We first
train tri-gram language models over the source
and target side of the in-domain corpus, respec-
tively (HI−src and HI−tgt). Then, build tri-gram
language models of similar size over the random
sample from the out-domain corpus (HO−src and
HO−tgt). Based on this, each sentence pair s from
O is scored by the bilingual cross-entropy dif-
ference [HI−src(s) − HO−src(s)] + [HI−tgt(s) −
HO−tgt(s)]. Finally, we sort all sentence pairs and
select top n (n = 100K) sentences pair with the
lowest scores to fine-tune the parameters of neu-
ral network.

Binary Classification: Finding the sentence
pairs that are similar to the in-domain corpora can
also be viewed as a text categorization problem,
albeit there are only two categories here, that is,
in-domain (1) and out-domain (0).

With the development of word embedding
(Mikolov et al., 2013), we are now able to con-
vert textual content into numerical representation
that bears much more information than the tra-
ditional ngram-based models can, such as posi-
tional, semantic and syntactical information. In
most sentences, there are parts that carry strong
domain information and are very useful in deter-
mining whether a particular sentence is in-domain
or out-domain, while other parts are much more
general and thus less useful. To extract such key
domain information from a sentence, we can use
convolutional neural network (CNN) with a soft-
max classifier sitting in the top layer.

We follow the footstep of Chen and Huang
(2016) where the Semi-Supervised CNN (SS-
CNN) domain adaption method was proposed. We
use our own cloud-based word2vec to train word
embeddings of 300 dimensions, using all avail-
able WMT18 bilingual and monolingual corpora
for the constrained translation tasks and all the cor-
pora that we have access to for the unconstrained
tasks. Similar to Chen and Huang (2016), we
also make full use of conText (Johnson and Zhang,
2015) as the CNN-based text classifier, which fea-
tures a stack of two independent CNNs. The in-
puts to the first network, which is a simple con-
volution layer, are bag-of-words one-hot vectors,

370

concatenated one-hot vectors, bag-of-words word
embedding vectors and concatenated word embed-
ding vectors, respectively, which results in four
output regions correspondingly. The regions are
then fed to the actual CNN classifier altogether
that consists of one convolution layer, one non-
linear layer, one max pooling layer as well as a
softmax. Without the loss of generality, we refer
the full stack as one CNN classifier. For bilingual
corpora, we train two classifiers, one for each lan-
guage. Each classifier is trained with pre-trained
word embeddings of each sentence and the cor-
responding label (1 for in-domain or 0 for out-
domain). During inference, the classifiers will
score each new sentence pair, resulting in four
scores. That is, for each language, we will have
one score for the in-domain possibility and the
other for out-domain. Then, we replace the en-
tropy scores of the scoring equation used in the
ngram-based approach with these four possibility
scores, to work out the final score for the sentence
pair.

While training the CNN classifiers, we first
sample a general domain corpora with the same
number of sentence pairs in the in-domain set to
be used as the out-domain set. For SSCNN, an
in-domain set of a few thousand sentence pairs
is sufficient to find high quality in-domain sub-
corpora from the general corpora. Then, we label
all in-domain pairs with 1 and all sampled pairs as
0. Next, for each language, we pass all labelled
sentences to a CNN classifier, where the first net-
work scans the input with the window size of 5 and
the stride size at 1 with a zero padding of 4. For
the second network, we employ 500 neurons with
ReLU as the activation for the nonlinear layer. The
loss function we use is mean square error and the
training progresses using SGD with momentum.

Hyper-specialisation: While the two methods
described previously in this section allow us to
acquire data that are close to our development
set, however, only suboptimal performance is ex-
pected on the final test set, as we don’t have the
reference translation to perform the bilingual data
selection for the final test set. Inspired by the
idea of hyper-specialisation (Deng et al., 2017),
we produced multiple hypotheses of the test set us-
ing our best single and ensemble models, and used
them as the target side translations. By integrating
the real source text and target side translation pairs
of the test set as in-domain seed into the data se-

lection process, we makes the latter aware of the
test set information, thereby enables it to retrieve
better in-domain bi-texts for this specific test set.
Subsequently, these synthetic bi-texts can serve as
train data as they are in-domain parallel data of
good quality, the idea is to imitate the effect of
model ensemble, but at the data level.

Finally, we replace Adam (Kingma and Ba,
2014) optimizer with SGD and use the learning
rate decay, then we continue training the current
best model for a few more iterations on the mix-
ture of synthetic bi-texts and top n (n=100K) se-
lected bilingual texts.

3.3 Greedy Model Selection based
Ensembling

Model ensembling is a widely used technique to
boost the performance of a MT system, which
consists in combining the prediction of multiple
models at each decode step. However, we have
observed that if the single models were strong
enough, very tiny improvement could be drawn
from a simple combination of the top N mod-
els. Also combining brutally an increasing number
of models could easily go over the resource limit
even with very powerful multi-gpu machines.

In order to overcome this limit, we adopted an
approach named Greedy Model Selection based
Ensembling (GMSE) that we will describe in this
section.

GMSE Algorithm: The algorithm takes as in-
put a sorted list of N strong single models L cand =
{M 0 ≤ i ≤ N} with N could possibly up to sev-
eral hundreds, the order is typically defined by the
performance on the development set. The algo-
rithm starts with a “keep” list C current which ini-
tially only contains the model M 0. At each iter-
ation, a model candidate M i, is shifted from the
input L cand and concatenated temporarily to the
current “keep” list, all these models are then put
through a standard model ensemble process. If the
current iteration ends up with a better BLEU score,
the candidate model M i is added to the “keep” list
C current. Otherwise, it is add to a “redemption” list
R. and still has a weak chance to be “redeemed”
for the future iterations. One model from the “re-
demption” list can only be redeemed once, after
which it is withdrawn definitely from the candi-
dates. At the beginning of each iteration, a can-
didate model M i could be either drawn from the
beginning of the L cand with a probability P, the

371

end of the L cand with a probability Preverse, or the
“redemption” list R with a probability Predeem, we
used [P, Preverse, Predeem] = [0.8, 0.1,0.1] for our ex-
periments. The algorithm ends when the input list
L cand is empty or a certain number of stalls (10)
is reached. See algorithm 1 for the pseudo-code.

Algorithm 1 GMSE algorithm
Input:

The sorted list of N single models ordered
by performance on dev set: L cand =
{M 0 ≤ i ≤ N};
Number of stalls before stopping the algo-
rithm: K;

Output:
The best combination when stopping criterion
is reached: C best;

1: Initialization:
2: C current = {M 0}
3: C best = {M 0}
4: R = {}
5: Sbest = SM0

6: k = 0
7: while k < K and L cand is not empty: do
8: if CONDITION(R, Predeem) = True: then
9: M cand = shift R

10: else if CONDITION(Preverse) = True: then
11: M cand = pop L cand
12: else
13: M cand = shift L cand
14: end if
15: C current = C current ∪{Mcand}
16: Scurrent = ensemble(Ccurrent)
17: if Scurrent > Sbest then
18: C best = C current
19: Sbest = Scurrent
20: else
21: C current = C best
22: R = {M cand} ∪R
23: end if
24: end while

As mentioned at the beginning of the section,
the effect of model ensemble is diminished with
strong single models, especially with fine-tuned
models. In order to boost the performance, we
trained independently a large number of mod-
els using different model features for transformer
models as described in the Section 2 , different hy-
perparameters, different versions of training data
and different model types, resulting in a search
space which is sufficiently large and with high di-

versity. The greedy nature of the GMSE algorithm
makes the search feasible in a relatively accept-
able time limit. On the development set, this al-
gorithm can consistently improve more +1 BLEU
point over the best single model across all the lan-
guage directions in which we have participated.
This increase drops to only around +0.3 - +0.5 on
test set.

3.4 Greedy Feature Selection based
Reranking

We describe the greedy feature selection based
reranking (GFSR) we used in WMT 2018 in this
section. N-best reranking in machine translation
is a common-used technology, which can improve
translation quality by picking better translations
from n-best list to replace the one with the high-
est MT model score.

GFSR Framework: We adopted the widely
used an open-source implementation in moses
(Koehn et al., 2007) of K-batched MIRA algo-
rithm (Cherry and Foster, 2012) to rerank the nbest
list. Unlike most common reranking architectures,
we select the features greedily from a large fea-
ture pool, in which there are about 50+ different
feature types.

1

Y

N

Start

#	features	>	threshold End

Greedy	Removing	each	feature,	then	
tuning	weights	on	dev

Removing	the	one	with	the	lowest	dev	
score,	saving	weights	configura?on

Figure 1: Framework of GFSR

As described in Figure 1, firstly, reranking the
nbest list with all n features in the feature pool.
Secondly, for all features, ignoring each one of
them from the feature pool in a loop, and using
the other n− 1 features to rerank on the dev data.
Then, the feature that can get largest BLEU score
improvement by ignoring it is removed from the

372

Category Features

NMT Model Features
Main model score
Left2Right sodel score (Liu et al., 2016)
Target2source model score (Sennrich et al., 2016)

Language Model Features Multiple ngram language models

Count Features

Word count
Char count
Word count ratio
Char count ratio

Word-alignment-based Features
Word posterior probability (Ueffing and Ney, 2007)
Sentence-level translation probability

Expected Scores
Consensus score (Expected BLEU) (DeNero et al., 2009)
Expected ChrF (Popović, 2015)
Expected Qmean (Chen et al., 2012)

Table 3: Features (feature templates) for reranking.

feature pools. The loop stops when the number of
features is smaller than a threshold.

Features: We used about 50+ features in our
reranking module, including NMT model features,
count-based features, word-alignment-based fea-
tures, expected scores features, etc. The feature
types are described in Table 3. Some feature types
such as NMT model features and Language Model
features may have multiple instances.

Reinforced Nbest Generation: In order to have
large beam size K = 100+ without introducing
too many noises, we use multiple strong ensem-
ble systems to generate a joint Nbest list. The idea
is to have a higher upper-bound for the beam with-
out the side-effect of having a lower lower-bound,
Thereby, the reranker can focus on only good can-
didates.

3.5 Postprocessing

To recase (or recapitalize) the MT output, SMT-
based recasers are trained on the Target side cor-
pus with Moses toolkit1. In these models, lan-
guage model plays an important role. As a re-
sult, large & domain related LMs are built. We
also use a few simple uppercase rules, for example
province & city names and the words beginning of
a sentence are capitalized.

4 Experiments and Results

Preliminary experiments showed that the model
features described in the section 2 yielded simi-
lar improvements reported in the original papers,
or on par with the standard Transformer. For all of
our baseline systems, we integrated these features
into our model architecture, except the neural suf-
fix prediction which is only used for the English
→ Russian system.

1http://www.statmt.org/moses/

All of our experiments employ 6 encoder and
decoder self-attention layers, both embedding and
hidden size have a dimension of 512, 8 heads for
the self-attention. We use FFN layer with 2048
cells and Swish (Ramachandran et al., 2017) as
activation function. Warmup step is set to 16000
with a learning rate equals to 0.0003. We use la-
bel smoothing with a confidence score 0.9 and all
the dropout probabilities are set to 0.1. All base-
line systems are trained with 4 to 8 GPUs using
synchronous-SGD with moving average mecha-
nism where the average is taken in time and in
space (Zhang et al., 2015).

We use BLEU as evaluation metric (Papineni
et al., 2002). For English ↔ Russian and En-
glish↔ Turkish, all reported scores are calculated
over tokenized texts except for the 2018 submis-
sion which is end2end BLEU. For English→ Chi-
nese, all reported scores are end2end BLEU score
using the SACREBLEU toolkit2 (Post, 2018).

4.1 English→ Chinese

For the English→ Chinese system, we use all the
available parallel data to train our English→ Chi-
nese system. The parallel corpus is firstly filtered
using the same pipeline as for the other language
pairs. As we find many sub-fragments belonging
to the same translation units in the parallel data,
we do an additional ngram-check based fuzzy fil-
tering to get rid of these noisy pairs. We use an
in-house tokenizer for both English and Chinese
tokenization. After the preprocessing, we train
BPE models with 60000 merge operations for both
sides respectively.

To employ the monolingual Chinese corpus, we
first build a ZH → EN Transformer system with
all the available parallel data. We select the good
quality in-domain corpus from the XMU mono-
lingual corpus3 to produce our synthetic data. The
corpus contains a total number of 5, 959, 849 sen-
tences after the selection and a rule-based filtering.
We set beam size as 12 and alpha as 0.6 during
batch-decoding. The generated synthetic data is
augmented into our parallel training data to build
our EN→ ZH Transformer system. We extended
the use of monolingual data to other sources, but
it didn’t result in better performance.

We follow the methods described in Subsec-
tion 3.2 for data selection. A series of models

2https://github.com/awslabs/sockeye/
tree/master/contrib/sacrebleu

3http://nlp.nju.edu.cn/cwmt-wmt/

373

System newsdev2017 newstest2017
baseline 35.47 35.29

+ corpus cleaning 36.02 36.64
+ back translation 39.15 40.04

+ finetuning 40.06 40.68
+ ensemble 40.57 41.18
+ reranking 40.89 41.60

WMT18 submission 43.37

Table 4: EN→ ZH BLEU results on newsdev2017 and
newstest2017

can be obtained according to the methods and the
amount of data used for fine-tuning. We adopt
the GMSE approach for ensemble, the final best
combination contains 7 models. Our reranker con-
tains more than 70 features, including 14 Chinese
language models, 8 Target-to-Source models, 4
Right-to-Left models. We use newsdev2017 as the
development set and newstest2017 as the valida-
tion set during model training. The results of our
system are reported in Table 4.1.

4.2 English↔ Russian

For English ↔ Russian, we use the following
resources from the WMT parallel data: News
Commentary v13, CommonCrawl, ParaCrawl cor-
pus, Yandex Corpus, UN Parallel CorpusV1.0 and
Wiki Headlines. We perform data quality assess-
ment, language identification, and excessive BPE
segmentation filtering, resulting in a 28 million
high-quality bilingual data. We train bidirectional
systems using this high-quality bilingual data. We
use 50000 BPE operations and the vocabulary size
is set to 50000. For the English → Russian sys-
tem, we found that it’s beneficial to not make use
of the UN corpora.

We selected in-domain monolingual data using
the development sets 2012-2017 as seed data from
the News Crawl corpora. We back-translated 24
million Russian and 70 million English sentences
into the respective source side language using the
the best single model trained on the high-quality
bilingual data.

4.3 English↔ Turkish

All parallel training data released are used in our
TR↔ EN systems, and it is about 207K sentences.
We use an in-house tokenizer for both English and
Turkish tokenization. A joint BPE model is ap-
plied in both directions, which is learned from
mixed corpus of EN and TR with 16000 merge op-

System newstest2016 newstest2017
baseline 31.62

+ corpus cleaning 34.71
+ w/o UN 31.99 36.15

+ back translation 34.24 38.94
+ finetuning 34.96 40.37
+ ensemble 35.98 41.06
+ reranking 36.41 41.77

WMT18 submission 34.8

Table 5: EN→ RU BLEU results on newstest2016 and
newstest2017

System newstest2016 newstest2017
baseline 29.98 33.56

+ corpus cleaning 30.82 36.33
+ back translation 33.90 39.84

+ finetuning 34.72 40.76
+ ensemble 35.76 41.34
+ reranking 36.23 41.97

WMT18 submission 34.9

Table 6: RU→ EN BLEU results on newstest2016 and
newstest2017

erations. As the parallel data amount is small, we
use a shared vocabulary for both EN and TR, and
we tie all embeddings of source, target and output
layer following Press and Wolf (2017).

The back translation is particularly effective for
EN ↔ TR as the amount of parallel data is very
limited. For EN→ TR, about 6 million sentences
are selected from the newscrawl2016, 2017 and
common crawl data, which is scored and sorted
by domain similarity with newstest2016 test-set
and authentic parallel data. Then, the 6 million
sentences are translated into English by a TR ↔
EN model trained by the authentic parallel corpus.
The domain relevance and the amount of data are
important when using back-translation. The TR
→ EN follows the same procedure to get synthetic
data, except the used monolingual data sources in-
clude news2014-2017 and news comment, and the
final amount of effective monolingual sentences is
10 million.

Unlike the back translation process, the fine-
tuning is less effective as the amount of authentic
parallel data is very limited. However, our data se-
lection methods can still yield about +0.5 BLEU
over strong underneath models.

374

System newstest2016 newstest2017
baseline 14.28 14.97

+ joint-bpe 15.83 16.13
+ corpus-cleaning 16.31 16.80
+ back translation 22.92 23.87

+ finetuning 23.57 24.20
+ ensemble 24.63 24.96
+ reranking 25.23 25.76

WMT18 submission 20.0

Table 7: EN→ TR BLEU results on newstest2016 and
newstest2017

System newstest2016 newstest2017
baseline 17.90 18.41

+ joint-bpe 18.33 18.72
+ corpus-cleaning 19.10 19.61
+ back translation 26.41 26.98

+ finetuning 27.21 27.52
+ ensemble 28.12 28.04
+ reranking 28.51 28.20

WMT18 submission 28.0

Table 8: TR→ EN BLEU results on newstest2016 and
newstest2017

5 Conclusion

This paper describes Alibaba’s neural machine
translation systems for the WMT18 shared news
translation task. For all translation directions,
we adopted the same strategies, which con-
sist of building numerous strong single systems
over which we employed reinforced multi-system
based mechanisms to get the best out of all these
single systems. We investigated the two main-
stream methods to build a strong single system,
one is based on incremental improvements of neu-
ral machine translation model architecture and the
other is to have more data and make a better use
of these data, and we found that the latter is more
effective, at least in the cases where the former is
not ”revolutionary” enough. Finally, for all trans-
lation directions in which we have participated, we
achieved the best results in term of case sensitive
BLEU score, setting the new state-of-the-art per-
formance.

References
Karim Ahmed, Nitish Shirish Keskar, and Richard

Socher. 2017. Weighted transformer network for
machine translation. CoRR, abs/1711.02132.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.

2011. Domain adaptation via pseudo in-domain
data selection. In Proceedings of the conference on
empirical methods in natural language processing,
pages 355–362. Association for Computational Lin-
guistics.

Boxing Chen and Fei Huang. 2016. Semi-supervised
convolutional networks for translation adaptation
with tiny amount of in-domain data. In Proceedings
of The 2016 SIGNLL Conference on Computational
Natural Language Learning, pages 314–323. Asso-
ciation for Computational Linguistics.

Boxing Chen, Roland Kuhn, and Samuel Larkin. 2012.
Port: a precision-order-recall mt evaluation metric
for tuning. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 930–939. Asso-
ciation for Computational Linguistics.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
427–436. Association for Computational Linguis-
tics.

John DeNero, David Chiang, and Kevin Knight. 2009.
Fast consensus decoding over translation forests. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2, pages 567–575.
Association for Computational Linguistics.

Yongchao Deng, Jungi Kim, Guillaume Klein, Cather-
ine Kobus, Natalia Segal, Christophe Servan,
Bo Wang, Dakun Zhang, Josep Maria Crego, and
Jean Senellart. 2017. SYSTRAN purely neural MT
engines for WMT2017. CoRR, abs/1709.03814.

Kevin Duh, Graham Neubig, Katsuhito Sudoh, and Ha-
jime Tsukada. 2013. Adaptation data selection us-
ing neural language models: Experiments in ma-
chine translation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
678–683.

Rie Johnson and Tong Zhang. 2015. Semi-supervised
convolutional neural networks for text categoriza-
tion via region embedding. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 919–927. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source

375

toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177–180. Association for Computational Linguis-
tics.

Lemao Liu, Masao Utiyama, Andrew Finch, and
Eiichiro Sumita. 2016. Agreement on target-
bidirectional neural machine translation. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
411–416.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion, pages 76–79.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Maja Popović. 2015. chrf: character n-gram f-score
for automatic mt evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. CoRR, abs/1804.08771.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In EACL.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2017. Searching for activation functions. CoRR,
abs/1710.05941.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. arXiv preprint arXiv:1606.02891.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. CoRR, abs/1803.02155.

Kai Song, Yue Zhang, Min Zhang, and Weihua Luo.
2018. Improved english to russian translation by
neural suffix prediction. CoRR, abs/1801.03615.

Nicola Ueffing and Hermann Ney. 2007. Word-
level confidence estimation for machine translation.
Computational Linguistics, 33(1):9–40.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Sixin Zhang, Anna E Choromanska, and Yann LeCun.
2015. Deep learning with elastic averaging sgd. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 28, pages 685–693. Cur-
ran Associates, Inc.

376

