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Abstract

The goal of WMT 2018 Shared Task on Trans-
lation Quality Estimation is to investigate au-
tomatic methods for estimating the quality of
machine translation results without reference
translations. This paper presents the QE Brain
system, which proposes the neural Bilingual
Expert model as a feature extractor based on
conditional target language model with a bidi-
rectional transformer and then processes the
semantic representations of source and the
translation output with a Bi-LSTM predictive
model for automatic quality estimation. The
system has been applied to the sentence-level
scoring and ranking tasks as well as the word-
level tasks for finding errors for each word in
translations. An extensive set of experimen-
tal results have shown that our system outper-
formed the best results in WMT 2017 Qual-
ity Estimation tasks and obtained top results in
WMT 2018.

1 Introduction

Quality Estimation (QE) is a task to estimate the
quality of a Machine Translation (MT) system
without the presence of any manually annotated
reference translations. It can serve in a vari-
ety of computer-aided scenarios such as transla-
tion results screening before release or transla-
tion quality comparison between different MT sys-
tems. Currently, the classical and widely-used
method to evaluate an MT system is measured
by BLEU (Papineni et al., 2002), a statistical
language-independent metric that requires human
golden references for validation. What if we ex-
pect to efficiently get the detailed quality evalua-
tion feedbacks (e.g. sentence or token-wise scor-
ing) from an extremely large number of machine
translation outputs? An automatic method with no
access to any reference is highly appreciated.

∗* indicates equal contribution.

The common approach to automatic translation
quality estimation is to transform the problem into
a supervised regression or classification task for
sentence-level scoring and word-level labeling re-
spectively. Traditional baseline models in WMT
12-17 have two modules: human-crafted rule-
based feature extraction model via QuEst++ (Spe-
cia et al., 2015) (sentence-level task) or Marmot1

(word-level task); and an SVM regression with
an RBF kernel as well as grid search algorithms
for predicting how much effort is needed to fix
translations to acceptable results (sentence-level
task) or a sequence-labeling model with CRFSuit
toolkit to predict which word in the translation
output needs to be edited (word-level task). A
recently proposed predictor-estimator model with
stack propagation (Kim et al., 2017) is a recur-
rent neural network (RNN) based feature extrac-
tor and quality prediction model that ranked first
place in WMT17. Another novel method is to
train an Automatic Post-Editing (APE) system and
adapt it to predict sentence-level quality scores and
word-level quality labels (Martins et al., 2017). A
promising APE system can serve as a guidance to
QE system by explicitly explaining errors in the
translation output.

Our submitted system for sentence and word
level QE tasks in WMT18, named QE Brain has
two phases: feature extraction and quality estima-
tion. In the phase of feature extraction, it extracts
high-level latent joint semantics and alignment in-
formation between the source and the translation
output, relying on the “neural Bilingual Expert
model” introduced by Fan et al. (2018) as a prior
knowledge model, which is trained on a large par-
allel corpus. The high-level latent semantic fea-
tures and manually designed mis-matching fea-
tures (Fan et al., 2018) exported from the prior

1https://github.com/qe-team/marmot
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knowledge model are fed into a predictive model
in the phase of quality estimation, with which
the scoring prediction for the sentence-level task
and erroneous or missing word predictions for the
word-level task are targeted. This paper presents
our submissions for the WMT18 Quality Estima-
tion English-German and German-English Shared
Tasks, namely, (i) a sentence-level QE scoring pre-
diction system and (ii) a word-level QE labeling
prediction system including word predictions and
gap predictions. Since both systems are supposed
to understand the complex semantic relationship
between the source and the translation output, the
features produced by a pre-trained neural Bilin-
gual Expert model can be shared by the two level
tasks per language direction.

In Section 3, we will discuss several techniques
to boost our system’s performance. We make use
of extra human-crafted baseline features including
basic descriptive statistics, language model (LM)
probabilities and alignments information of the
source and the translation output. They are com-
bined with features from the neural Bilingual Ex-
pert model to predict the sentence-level scores. In
addition, to make up the shortage of QE train-
ing data, we apply the round-trip translation tech-
nique to generate some artificial QE data that in-
creases the error diversity and prevents overfitting.
To further enhance our model’s performance, we
use a greedy algorithm based ensemble selection
method to decrease the individual error among a
bunch of single quality estimation models.

2 QE Brain Baseline Model

QE Brain base single model contains a feature ex-
tractor and a quality estimator. The feature extrac-
tor relies on the Bilingual Expert model to extract
features representing latent semantic information
of the source and translation pair. These features
will be fed into a quality estimator to estimate the
translation quality.

The Bilingual Expert model uses self-attention
mechanism and transformer neural networks to
construct a bidirectional transformer architecture
(Fan et al., 2018), serving as a conditional lan-
guage model. It is used to predict every sin-
gle word in the target sentence given the entire
source sentence and its context . The Bilingual
Expert model consists of three modules: (i) trans-
former self-attention based encoder for the source
sentence, (ii) forward and backward encoders for

the target sentence with the masked self-attention
in the transformer decoder module, (iii) recon-
struction for the target sentence. Once the model
is fully trained, we can use the prior knowledge
learned from the Bilingual Expert model to extract
the features for the subsequent translation quality
estimator. There are two kinds of features upon
the Bilingual Expert model defined by Fan et al.
(2018): model derived features of latent represen-
tations and manually extracted mismatching fea-
tures.

When we perform quality estimation on a
source and translation pair, we need to obtain
the semantics information of the source and the
translation output and their alignment informa-
tion. We can assume that it is more likely for the
model to predict a correct target word if only few
words around it are incorrect. Fan et al. (2018)
claims that both the latent representations of the
k-th word in the translation output and its mis-
matching features that reflect the error severity if it
is a mistake are sufficiently beneficial to the down-
stream quality predictive model. Choices of the
quality estimation models are compared as well. It
is found that the bi-directional LSTM (Graves and
Schmidhuber, 2005) will be appropriate in the QE
situation. We treat the feature extraction model
based on the neural Bilingual Expert model and
the quality estimation based on Bi-LSTM model
as our baseline system.

3 Boosting the QE Model Performance

3.1 Human-crafted Features
Along with the features produced by the Bilingual
Expert model, we extract another 17 QE baseline
features for the sentence-level task using QuEst++
and additional resources (source and target cor-
pora, language models, ngram counts and lexical
translation tables) provided on the WMT18 QE
website2. Kozlova et al. (2016) verifies the sig-
nificance of these features using Random Forest
(Breiman, 2001). Four of them are the most cru-
cial among all according to their degrees of impor-
tance.

- percentage of trigrams in quartile 4 of fre-
quency of source words in a corpus of the
source language

- LM probability of source sentence
2http://www.statmt.org/wmt18/

quality-estimation-task.html
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- percentage of bigrams in quartile 4 of fre-
quency of source words in a corpus of the
source language

- average number of translations per source
word in the sentence

Language models (LM) assign probabilities to
generate hypotheses in the target language in-
forming lexical selection in statistical machine
translation (SMT). It is reasonable that three of
the above four baseline features are derived from
the LM. Moreover, alignment models can essen-
tially help SMTs determine translational corre-
spondences between the N-grams in the source
with those of the same meanings in the target. Par-
ticularly, a satisfying translation result can contain
as many translated words as possible, according to
an alignment model, IBM model 1 or 2. Conse-
quently, average number of translations per source
word in the sentence becomes large.

Fan et al. (2018) proposed to use the concatena-
tion of the model derived and mis-matching fea-
tures as input of a Bi-LSTM quality predictive
model. The sentence-level score prediction can be
formulated as a regression problem with the objec-
tive function,

argmin
∥∥∥h− sigmoid

(
w>[
−→
hT ;
←−
hT ]
)∥∥∥

2

2
(1)

where
−→
hT and

←−
hT are the hidden states of the last

time stamps of the Bi-LSTM’s output, h represents
the translation score (HTER) and w is a vector.
Alternatively, we introduce the human-crafted fea-
tures as additional linear components for the pre-
dictive layer with a sigmoid activation function.
Therefore, the objective function can be rewritten
as,

argmin
∥∥∥h− sigmoid

(
w>[
−→
hT ;
←−
hT ; fh]

)∥∥∥
2

2
(2)

where fh is the 17-dimensional QE baseline fea-
tures.

3.2 Artificial QE Data Construction
Unlike stacking of an APE-based QE system and
a “pure” QE system trained only on the provided
QE training dataset (Martins et al., 2017), we came
up with the idea to take advantage of the artificial
training data augmentation technique (Junczys-
Dowmunt and Grundkiewicz, 2016) in the APE
task to provide more supplementary training data,

Figure 1: Robustness analysis on English-German QE
model. Experiment 1: model trained with real QE data;
Experiment 2: model trained with real and artificial QE
data

aiming to increase the diversity of erroneous trans-
lations during the training process so that it can re-
duce the overfitting of our model. We trained two
English-German quality estimation models with
(i) the real QE training data alone or (ii) the real
and artificial QE data, and evaluated them on the
development data and the data made up with 1800
random samples from the real QE training data to
investigate the robustness of them. As shown in
Fig 1, the model trained with (ii) (Experiment 2)
is more robust than the model trained with (i) (Ex-
periment 1), but can achieve comparable perfor-
mance on the development data.

The round-trip translation process can produce
literal translations that may be similar to post-
edited triplets including sources (SRC), translation
outputs (MT) and post editions (PE). In order to
mimic the QE data, we randomly pick triplets gen-
erated by the round-trip translation technique ac-
cording to the distribution of HTERs in the real
QE training and development data.

3.3 Greedy Ensemble Selection

To generate an ensemble of submissions for the
WMT 18 QE task, the simplest methods are av-
eraging the predictive scores for the sentence level
and majority voting for the predictive labels for the
word level from a number of single models. Ho-
mogeneous models can be derived from perform-
ing the same learning methodology but with dif-
ferent hyper-parameters of the model architecture
including the neural Bilingual Expert model and
Bi-LSTM quality predictive model.

811



In the sentence level, adding human-crafted fea-
tures can be optional when we make different as-
sumptions about the features of source and trans-
lation pairs. Under this situation, heterogeneous
models can be derived from performing the same
learning algorithm on different datasets. We can
also use the Byte-Pair Encoding (BPE) tokeniza-
tion as a substitution for a word tokenization in
text pre-processing. Fan et al. (2018) compared
the performance of the word and BPE tokeniza-
tion on both sentence and word levels in WMT 18
and the results show that the models with BPE tok-
enization can produce comparable or better results
than those with word tokenization.

In general, the ensemble output of K single
models can be produced by the following objec-
tive function,

argmax
tk

K∑

k=1

wkmk (X = x, T = tk) (3)

where mk is the k-th single model that has prob-
ability distribution mk (x, tk) with its correspond-
ing weight wk. X represents the feature instance
of a single model, and T represents the HTER or
the word label where tk can be a continuous qual-
ity score or an OK/BAD label respectively. We
assign equal weights to every single model in our
case for simplicity.

Since not every single model in the ensemble is
always needed for the optimized prediction, it is
appropriate to select a subset from all candidate
models. We follow the greedy ensemble selec-
tion algorithm, Focused Ensemble Selection (FES
) (Partalas et al., 2008), to reduce the size of av-
eraging ensembles but improve its efficiency and
predictive performance.

In the sentence level, FES’s output is averaging
HTER scores of selected single models. However,
in the word level, the ensemble can be made by
majority voting of the binary predictions for se-
lected single models or averaging their probabili-
ties of predicting the word as OK. We use the de-
velopment data for evaluation under the assump-
tion that the development data and the test data are
from the same distribution, even if it might be sus-
ceptible to overfitting. However, we did not ob-
serve this phenomena in results released for the
test data in WMT18 QE task.

4 Experiments

4.1 Experimental Settings

4.1.1 Data for Bilingual Expert Model
We evaluated our system, QE Brain, for the
WMT17/18 QE task for sentence/word-level in
English-German and German-English. The fol-
lowings are data resources that we used for train-
ing the neural Bilingual Expert model,

- parallel corpora released for the WMT17/18
News Machine Translation Task3

- UFAL Medical Corpus and Khresmoi devel-
opment data release for the WMT18 Biomed-
ical Translation Task4

- source and target corpora MT training data
released in the additional resources for the
WMT18 QE Task

- src-pe pairs for for the WMT17/18 QE Task

We filtered all the corpora except src-pe pairs with
basic rules to guarantee the quality. A “high-
quality” sentence pair should both start with a Uni-
code letter character, the lengths of them are equal
to or less than 70, and the length ratio of the source
sentence and the target one should be bounded by
1/3 and 3. The total resulting qualifying parallel
corpora roughly include 13 million for WMT17
QE tasks and 29 million for WMT18 QE tasks.

4.1.2 Data for Quality Estimation Model
The data for quality estimation contains two parts:
(i) real QE data provided by WMT QE organiz-
ers; (ii) artificial QE data generated by the round-
trip translation technique (Junczys-Dowmunt and
Grundkiewicz, 2016). We first combined the real
QE data with the artificial QE data to train a
baseline quality estimation model, then fine tuned
the model with the real QE data alone. The
English-German IT domain artificial QE data can
be obtained directly from the additional resources
of WMT18 Auto Post-Editing task5 created by
Junczys-Dowmunt and Grundkiewicz (2016). We
applied the English-German artificial QE data on

3http://www.statmt.org/wmt18/
translation-task.html

4http://www.statmt.org/wmt18/
biomedical-translation-task.html

5http://www.statmt.org/wmt18/ape-task.
html
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test 2017 en-de test 2017 de-en
Method Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑ Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
Baseline 0.397 0.136 0.175 0.425 0.0745 0.441 0.128 0.175 0.45 0.0681
Unbabel 0.641 0.128 0.169 0.652 0.1136 0.626 0.121 0.179 0.61 0.974

POSTECH Single-Ensemble 0.6731 0.1067 0.1412 0.7029 0.1198 0.7146 0.0942 0.1359 0.6327 0.1044
POSTECH Multi-Ensemble 0.6954 0.1019 0.1371 0.7253 0.1232 0.7280 0.0911 0.1332 0.6542 0.1064
QE Brain Base Single Model 0.6837 0.1001 0.1441 0.7091 0.1200 0.7099 0.0927 0.1394 0.6424 0.1018

+ HF 0.6842 0.1013 0.1449 0.7150 0.1213 0.7085 0.0901 0.1406 0.6551 0.1040
+ FT 0.6957 0.1001 0.1420 0.7205 0.1208 0.7128 0.0933 0.1394 0.6422 0.1013

+ HF/FT 0.6813 0.1021 0.1460 0.7070 0.1197 0.7149 0.0889 0.1385 0.6596 0.1026
QE Brain Ensemble 0.7159 0.0965 0.1384 0.7402 0.1247 0.7338 0.0882 0.1333 0.6700 0.105

Table 1: Results of sentence-level scoring and ranking on WMT17. HF: human features; FT: fine-tune strategy
with artificial QE data.

the SMT QE task. For the neural machine transla-
tion (NMT) QE task, we followed the same pro-
cedure but trained two NMT models (German-
English and English-German) instead.

Similarly, when generating German-English
Pharmacy domain artificial QE data, we first
applied domain data selection to the English
monolingual corpus admissible for the WMT18
News and Biomedical Translation data with cross-
entropy filtering method and seed data set – post-
editing training data and the English biomedical
data. In total, we got 5 million domain-like sen-
tences for the round-trip translation. Afterwards,
we created two phrase-based translation models,
English-German and German-English, using the
parallel bilingual corpora for the WMT18 News
and Biomedial Translation tasks but with different
language models. The 5 million domain-like sen-
tences as PEs would be first translated to German
as SRCs and the SRCs would be then translated
to English as MTs. Finally, we would have 5 mil-
lion artificial APE training data, leading to 5 mil-
lion artificial QE training data with corresponding
HTERs and word labels via the TER tool.

We filtered the English-German and German-
English artificial QE data according to the HTER
distribution of the combination of QE training
and development data, and randomly pick 300,000
triplets per language pair.

Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑
Method test 2018 en-de SMT
Baseline 0.3653 0.1402 0.1772 0.3809
UNQE 0.7000 0.0962 0.1382 0.7244

QE Brain Ensemble 1 0.7308 0.0953 0.1383 0.7470
QE Brain Ensemble 2 0.7397 0.0937 0.1362 0.7543

Method test 2018 en-de NMT
Baseline 0.2874 0.1286 0.1886 0.4195
UNQE 0.5129 0.1114 0.1749 0.6052

QE Brain Ensemble 1 0.5005 0.1134 0.1734 0.6002
QE Brain Ensemble 2 0.5012 0.1131 0.1742 0.6049

Method test 2018 de-en SMT
Baseline 0.3323 0.1508 0.1928 0.3247
UNQE 0.7667 0.0945 0.1315 0.7261

QE Brain Ensemble 1 0.7539 0.0981 0.1355 0.7222
QE Brain Ensemble 2 0.7631 0.0962 0.1328 0.7318

Table 2: Results of sent level QE on WMT2018

F1-BAD F1-OK F1-Multi
Method test 2017 en-de
Baseline 0.407 0.886 0.361

DCU 0.614 0.910 0.559
Unbabel 0.625 0.906 0.566

POSTECH Ensemble 0.628 0.904 0.568
QE Brain Base Single Model 0.6407 0.9045 0.5795

+ FT 0.6410 0.9083 0.5826
QE Brain Ensemble 0.6616 0.9128 0.6039

Method test 2017 de-en
Baseline 0.365 0.939 0.342

POSTECH Single-Ensemble 0.552 0.936 0.516
Unbabel 0.562 0.941 0.529

POSTECH Multi-Ensemble 0.569 0.940 0.535
QE Brain Base Single Model 0.5750 0.9471 0.5446

+ FT 0.5816 0.9470 0.5507
QE Brain Ensemble 0.5924 0.9475 0.5613

Method test 2018 en-de SMT
Baseline 0.4115 0.8821 0.3630

SHEF-PT 0.5080 0.8460 0.4298
QE Brain Ensemble 1 0.6616 0.9168 0.6066
QE Brain Ensemble 2 0.6808 0.9175 0.6246

Method test 2018 en-de NMT
Baseline 0.1973 0.9184 0.1812

SHEF-PT 0.3353 0.8691 0.2914
QE Brain Ensemble 1 0.4750 0.9152 0.4361
QE Brain Ensemble 2 0.4767 0.9149 0.4347

Method test 2018 de-en SMT
Baseline 0.4850 0.9015 0.4373

SHEF-PT 0.4853 0.8741 0.4242
QE Brain Ensemble 1 0.6475 0.9162 0.5932
QE Brain Ensemble 2 0.6523 0.9217 0.6012

Table 3: Results of word-level word prediction on
WMT17/18

Method F1-BAD F1-OK F1-Multi
UAlacante SBI 0.1997 0.9444 0.1886
SHEF-bRNN 0.2710 0.9552 0.2589

SHEF-PT 0.2937 0.9618 0.2824
QE Brain 0.5109 0.9783 0.4999

Table 4: Results of word-level gap prediction on
WMT18 En-De SMT

4.1.3 Model Settings
The number of layers for the self-attention encoder
and forward/backward self-attention decoder are
all set as 2, where we use 8-head self-attention in
practice. The number of hidden units for feed-
forward sub-layer is 512. The bilingual expert
model is trained on 8 Nvidia P-100 GPUs for
about 3 days until convergence. For translation QE
model, we use only one layer Bi-LSTM, and it is
trained on a single GPU. Notice that for the QE
task of WMT17, it is prohibited to use any data
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from 2018, since the training data of 2018 includes
some test data of 2017. The same setting is applied
to all following experiments associated with 2017.
We tuned all the hyper-parameters of our model
on the development dataset to obtain the best sin-
gle model, and report the corresponding results for
test data.

We increased the model diversity from two per-
spectives. First, in terms of data resources, we
experienced with three strategies: word/BPE to-
kenization, w/ or w/o artificial QE data and w/ or
w/o human-crafted features for the sentence-level
task. Secondly, we tuned the number of units for
Bi-LSTM with 96 or 128 and training batch size
with 32 or 64 from the model’s perspective.

4.2 Evaluation Results

In this section, we will report the experimen-
tal results of our approach for WMT 2017 and
2018. For WMT17 QE task, we tried to verify
our proposed strategies. For WMT18 QE task, we
mainly participated in the sentence-level scoring
and ranking tasks and the word-level word pre-
diction tasks for English-German SMT, English-
German NMT and German-English SMT. In ad-
dition, we also submitted results for the word-
level gap predictions for English-German SMT.
In Table 2, part of Table 3 and Table 4, results
of WMT18 QE tasks are listed according to the
WMT18 QE website.

4.2.1 Ablation Study on WMT17 QE Task
Since we can access the translation outputs of hu-
man post-editing for test data, it provides an ideal
held-out test data to verify our proposed strategies.
We illustrated our results in Table 1 and part of Ta-
ble 3 on WMT17 QE Task. The competitors are
POSTECH, DCU and Unbabel. Their results can
be found in (Bojar et al., 2017) , Section 4.4 and
Section 4.5. We also listed the WMT QE baseline
results for reference. The QE Brain base single
model follows the exact training scheme in (Fan
et al., 2018) with model derived features and mis-
matching features. In sentence level, either incor-
porating human features or the use of artificial QE
data will positively contribute to the metrics. For
Pearson’s r, the single fine-tuning strategy yields
the improvement +0.01 on English-German and
+0.003 on German-English. For Spearman’s ρ,
the single model with human features improves
the performance by +0.006 in English-German
and +0.013 in German-English.

In word level, we did not use any human fea-
tures, but we found fine-tune strategy can al-
ways improve the performance. For F1-Multi,
the single fine-tuning strategy yields the improve-
ment +0.003 on English-German and +0.006 on
German-English. In general, with all these strate-
gies, our single models can be comparable or bet-
ter than the state-of-the-art (SOTA) ensemble sys-
tems of WMT17 QE task. Our ensemble models
significantly outperform all of the SOTA systems.

4.3 Ensemble Analysis on WMT18 QE Task

As we discussed previously, we tried both word
and BPE tokenization for the data pre-processing.
Thus, we submitted two types of ensemble mod-
els, where Ensemble 1 is referred to the model en-
sembles trained with word tokenization and En-
semble 2 is the model ensembles trained with both
word and BPE tokenizations. Training with BPE
tokenization can naturally increase the model di-
versity, so it makes sense that Ensemble 2 per-
forms better than Ensemble 1, except for English-
German NMT word-level task, which is very
likely due to the small data size (<14000).

5 Conclusion

This paper introduces our machine translation
quality estimation system, QE Brain, for both the
sentence-level and word-level tasks in WMT 2018
Quality Estimation. The system proposes the neu-
ral Bilingual Expert model to extract semantic fea-
tures from both the source and translation out-
put for estimating translation quality with a bi-
directional LSTM predictive model. In particular,
three important strategies are utilized for obtaining
positive results as incorporating human-crafted
features, artificial QE data augmentation for more
diversified training data and model ensemble with
a greedy algorithm. The results of our system ob-
tained No.1. in the English-German SMT scoring
and ranking tasks as well as the German-English
SMT ranking tasks. Furthermore, our system also
produced the best results in all word-level English-
German and German-English word and gap pre-
diction tasks.
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