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Abstract

This paper presents the Automatic Post-
editing (APE) systems submitted by the DFKI-
MLT group to the WMT’18 APE shared
task. Three monolingual neural sequence-
to-sequence APE systems were trained using
target-language data only: one using an at-
tentional recurrent neural network architec-
ture and two using the attention-only (trans-
former) architecture. The training data was
composed of machine translated (MT) output
used as source to the APE model aligned with
their manually post-edited version or reference
translation as target. We made use of the pro-
vided training sets only and trained APE mod-
els applicable to phrase-based and neural MT
outputs. Results show better performances
reached by the attention-only model over the
recurrent one, significant improvement over
the baseline when post-editing phrase-based
MT output but degradation when applied to
neural MT output.

1 Introduction

For the 2018 edition of the WMT automatic post-
editing (APE) task, two novelties were added com-
pared to the previous editions: post-editing of neu-
ral machine translation (NMT) output in addition
to phrase-based (PBMT) output, and the availabil-
ity of larger training sets.

The DFKI-MLT systems developed for this
shared task aimed at handling outputs from PBMT
and NMT jointly with a single APE model. This
was achieved by using artificial tokens indicating
which type of MT system was used to produce the
source segment and from which corpus the seg-
ment pair was extracted (inspired by (Yamagishi
et al., 2016; Sennrich et al., 2016a; Johnson et al.,
2017)).

Two NMT architectures were used to train our
APE models, one using gated recurrent layers with

global attention (Bahdanau et al., 2014), and one
using attention and feed-forward layers without
recurrence (Vaswani et al., 2017). The training
data was composed of the official training set re-
leased by the shared task organizers plus subsets of
the two additional resources filtered with bilingual
cross-entropy difference (Axelrod et al., 2011).

The NMT architectures are described in Sec-
tion 2 and the data preparation process is presented
in Section 3. The results obtained by our APE
models are compared to the baseline in Section 4.
Finally, a conclusion is given in Section 5.

2 APE Architectures

The two neural network architectures used in our
experiments were an attentional recurrent neu-
ral network with gated units and a multi-head
attention-only network.

2.1 Recurrent Neural Network

For the Recurrent Neural Network (RNN) ap-
proach, we followed the architecture presented
in (Bahdanau et al., 2014) and implemented in
OPENNMT (Klein et al., 2017)1. Both the en-
coder and the decoder were 2-layered mono-
directional RNNs with LSTM cells. The decoder
applies global attention over the source sentence
and performs input feeding. The source and tar-
get word embeddings, as well as the hidden layers,
had 500 dimensions. The dropout probability was
set to 0.3. The source and target vocabulary size
is limited to 50000 tokens. Standard stochastic
gradient descent is used as optimizer with a maxi-
mum batch size of 64. These hyper-parameters are
the default ones in OPENNMT and were not tuned
during the experiments presented in this paper.

1We used the Torch version of OPENNMT available at
https://github.com/OpenNMT/OpenNMT
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2.2 Attention Only

For the attention only approach, we used the archi-
tecture described in (Vaswani et al., 2017) and im-
plemented in MARIAN (Junczys-Dowmunt et al.,
2018). Two models were trained following this
approach with variations in the number of heads
(parallel attention layers), using 4 heads and 1024
dimensions for the feed-forward layers for one
configuration (noted Transformer small) and 8
heads and 2048 dimensions for the second config-
uration (noted Transformer large). For both con-
figurations, 512 dimensions were used for the em-
bedding layers and the positional encodings, the
dropout rate was set to 0.1 and the batch size to 32.
These hyper-parameters were selected in order to
compare the impact of increasing the dimension-
ality of the encoder and decoder layers, as well as
the number of heads, on the post-editing perfor-
mances.

3 Data Preparation

The training corpora provided for the APE shared
task since 2016 were used (Bojar et al., 2016,
2017), as well as the two additional resources
made available by the shared task organizers,
namely the artificial training data presented
in (Junczys-Dowmunt and Grundkiewicz, 2016)
and the eSCAPE corpus (Negri et al., 2018). The
target language data (German) was used for both
input and output sequences in our APE models,
the machine translated text being the source se-
quences and the corresponding post-edited text
the target sequences, without making use of the
source language (English). We did not split the
machine translated data whether it was produced
by a phrase-based (PBMT) or a neural (NMT) sys-
tem. Instead, we added a specific token at the be-
ginning of every source (machine translated) seg-
ment indicating which type of translation system
was used to produce it.

The two additional parallel resources (artificial
training data and eSCAPE corpora) were filtered
using the bilingual cross-entropy difference ap-
proach presented in (Axelrod et al., 2011). We
used the APE training data as in-domain cor-
pus and each additional parallel corpus individ-
ually as out-of-domain corpus. The top n sen-
tence pairs ranked by their bilingual cross-entropy
scores were kept, with n being set by calculating
the perplexity obtained on the development set.
The resulting corpora used contain approx. 100k,

300k and 360k segment pairs taken from the eS-
CAPE PBMT corpus, the eSCAPE NMT corpus
and the artificial training data respectively. Fi-
nally, we added a specific token at the beginning
of every source segment indicating from which
source it comes from: eSCAPE, artificial and wmt.
The latter token was added to the official training
data provided for the APE task, and to the devel-
opment and test sets as well.

All datasets were used together to train our APE
models, the artificial tokens inspired by (Yamag-
ishi et al., 2016; Sennrich et al., 2016a; Johnson
et al., 2017) allowed for identification of the seg-
ment pairs provenance. In order to balance the
amount of data coming from different sources, we
oversampled the official training data to reach ap-
proximately the amount taken from the two ad-
ditional resources. Similarly, we increased the
amount of data produced by a NMT system to bal-
ance with the amount produced by a PBMT sys-
tem. This method was inspired by the work pre-
sented in (Chu et al., 2017).

The corpora which were not already tokenized
were processed with the tokenizer distributed with
the MOSES toolkit (Koehn et al., 2007). Addi-
tionally, all corpora were true-cased using a pre-
trained true-casing model provided by the WMT
organizers2. Finally, a byte-pair encoding (Sen-
nrich et al., 2016b) model was trained on the Ger-
man training data available for the WMT trans-
lation task and applied to both source and target
sides of all corpora used in our experiments.

4 Evaluation

The three APE models trained for the shared task
were used to post-edit the test set released by the
organizers. Automatic evaluation with BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006)
was conducted by the organizers and the obtained
scores on the official test set are reported in Ta-
ble 1. The automatic metrics results are obtained
by comparing each system output to the manually
post-edited MT output (TERpe and BLEUpe), to
an independent translation (TERref and BLEUref)
and finally using both post-edited MT output and
independent translation simultaneously as a multi-
reference evaluation approach (TERpe+ref and
BLEUpe+ref). The results obtained by the non-
post-edited MT output is presented as a baseline.

2http://data.statmt.org/wmt18/
translation-task/preprocessed/de-en/
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System TERpe BLEUpe TERref BLEUref TERpe+ref BLEUpe+ref

PBMT Output
Baseline 24.24 62.99 48.33 36.42 23.76 66.21
Transformer large 24.19 63.40 47.98 36.81 23.68 66.66
Transformer small 24.50 62.78 48.27 36.61 24.04 66.11
RNN 25.30 62.10 48.55 36.19 24.74 65.33

NMT Output
Baseline 16.84 74.73 42.24 44.22 16.27 76.83
Transformer large 18.86 70.98 43.74 41.53 18.37 72.93
Transformer small 18.84 70.87 43.79 41.53 18.41 72.95
RNN 19.88 69.35 44.28 40.91 19.43 71.36

Table 1: Automatic metrics results on the test set obtained by our APE models and compared to the baseline using
three evaluation methods. Result in bold indicates significant improvement over the baseline.

The automatic evaluation results show that our
models significantly degrades the baseline for the
NMT output experiments when using the manu-
ally post-edited MT output, the independent trans-
lation and both simultaneously as gold reference
to compute the scores. For the PBMT experi-
ments, the model noted Transformer large signif-
icantly improves the PBMT output according to
the BLEU metric for the three evaluation methods
(+0.4pt for the post-edited MT output, +.39pt of
the reference and +.45pt for both). However, the
TER metric does not indicate significant improve-
ments over the baseline when using the manually
post-edited MT output as a gold reference.3

The degradation of NMT output in terms of au-
tomatic metrics might have at least two explana-
tions. First, the lower amount of available train-
ing data produced by this type of MT system and
provided by the organizers (17, 753 unique to-
kens for NMT and 22, 578 for PBMT after true-
casing). We used the over-sampling technique to
balance the amount of NMT and PBMT data but
this method does not increase the vocabulary cov-
erage. Second, the baseline performances as indi-
cated by the BLEU metric, 74.73 and 44.22 for the
post-edited MT output and translation reference
used as gold target respectively, are higher than the
ones obtained with the PBMT experiments, which
might be harder to outperform.

5 Conclusion

This paper presented the DFKI-MLT submissions
to the WMT’18 APE shared task, which involved
datasets produced by NMT and PBMT systems,
as well as larger training data provided by the or-

3Significance tests were performed by the shared task
organizers, more details are available in (Chatterjee et al.,
2018).

ganizers. We evaluated two different APE archi-
tectures based on neural networks and made use
of data preprocessing techniques to allow single
models to be trained while being able to post-edit
both NMT and PBMT outputs and using the target
language data only.

The results as indicated by the BLEU metric
showed that our approach brings significant im-
provement over the non post-edited PBMT output
when using various gold references to compute the
evaluation scores, but fails at improving NMT out-
put. This might be due to the lower amount of
training data produced by an NMT system com-
pared to the PBMT produced data, and to the high
performance reached by the baseline system on the
NMT output as indicated by BLEU.

From the two APE architectures evaluated in
our experiments and according to the automatic
metrics used, the attention-only model outper-
formed the gated recurrent one for both types of
MT output to post-edit. Both NN architectures
could possibly reach better post-editing perfor-
mances with careful hyper-parameters tuning and
we plan to conduct these experiments in the future.
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