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Abstract

Most previous work on neural text gen-
eration from graph-structured data relies
on standard sequence-to-sequence meth-
ods. These approaches linearise the input
graph to be fed to a recurrent neural net-
work. In this paper, we propose an alterna-
tive encoder based on graph convolutional
networks that directly exploits the input
structure. We report results on two graph-
to-sequence datasets that empirically show
the benefits of explicitly encoding the in-
put graph structure.1

1 Introduction

Data-to-text generators produce a target natu-
ral language text from a source data representa-
tion. Recent neural generation approaches (Mei
et al., 2016; Lebret et al., 2016; Wiseman et al.,
2017; Gardent et al., 2017b; Ferreira et al., 2017;
Konstas et al., 2017) build on encoder-decoder
architectures proposed for machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015).

The source data, differently from the machine
translation task, is a structured representation of
the content to be conveyed. Generally, it describes
attributes and events about entities and relations
among them. In this work we focus on two genera-
tion scenarios where the source data is graph struc-
tured. One is the generation of multi-sentence de-
scriptions of Knowledge Base (KB) entities from
RDF graphs (Perez-Beltrachini et al., 2016; Gar-
dent et al., 2017a,b), namely the WebNLG task.2

The number of KB relations modelled in this sce-
nario is potentially large and generation involves

1Code and data available at github.com/diegma/
graph-2-text.

2Resource Description Framework https://www.w3.
org/RDF/

solving various subtasks (e.g. lexicalisation and
aggregation). Figure (1a) shows and example of
source RDF graph and target natural language de-
scription. The other is the linguistic realisation
of the meaning expressed by a source dependency
graph (Belz et al., 2011), namely the SR11Deep
generation task. In this task, the semantic rela-
tions are linguistically motivated and their number
is smaller. Figure (1b) illustrates a source depen-
dency graph and the corresponding target text.

Most previous work casts the graph structured
data to text generation task as a sequence-to-
sequence problem (Gardent et al., 2017b; Ferreira
et al., 2017; Konstas et al., 2017). They rely on
recurrent data encoders with memory and gating
mechanisms (LSTM; (Hochreiter and Schmidhu-
ber, 1997)). Models based on these sequential en-
coders have shown good results although they do
not directly exploit the input structure but rather
rely on a separate linearisation step. In this work,
we compare with a model that explicitly encodes
structure and is trained end-to-end. Concretely,
we use a Graph Convolutional Network (GCN;
(Kipf and Welling, 2016; Marcheggiani and Titov,
2017)) as our encoder.

GCNs are a flexible architecture that allows
explicit encoding of graph data into neural net-
works. Given their simplicity and expressiveness
they have been used to encode dependency syntax
and predicate-argument structures in neural ma-
chine translation (Bastings et al., 2017; Marcheg-
giani et al., 2018). In contrast to previous work,
we do not exploit the sequential information of the
input (i.e., with an LSTM), but we solely rely on a
GCN for encoding the source graph structure.3

The main contribution of this work is show-
ing that explicitly encoding structured data with

3Concurrently with this work, Beck et al. (2018) also
encoded input structures without relying on sequential en-
coders.

github.com/diegma/graph-2-text
github.com/diegma/graph-2-text
https://www.w3.org/RDF/
https://www.w3.org/RDF/
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(a) Above the Veil is an Australian novel and the sequel to Aenir and

Castle . It was followed by Into the Battle and The Violet Keystone .
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(b) Giant agreed last month to purchase the carrier .

Figure 1: Source RDF graph - target description (a). Source dependency graph - target sentence (b).

GCNs is more effective than encoding a linearized
version of the structure with LSTMs. We eval-
uate the GCN-based generator on two graph-to-
sequence tasks, with different level of source con-
tent specification. In both cases, the results we ob-
tain show that GCNs encoders outperforms stan-
dard LSTM encoders.

2 Graph Convolutional-based Generator

Formally, we address the task of text generation
from graph-structured data considering as input a
directed labeled graph X = (V, E) where V is
a set of nodes and E is a set of edges between
nodes in V . The specific semantics of X de-
pends on the task at hand. The output Y is a
natural language text verbalising the content ex-
pressed by X . Our generation model follows the
standard attention-based encoder-decoder archi-
tecture (Bahdanau et al., 2015; Luong et al., 2015)
and predicts Y conditioned on X as P (Y |X) =∏|Y |

t=1 P (yt|y1:t−1, X).

Graph Convolutional Encoder In order to ex-
plicitly encode structural information we adopt
graph convolutional networks (GCNs). GCNs are
a variant of graph neural networks (Scarselli et al.,
2009) that has been recently proposed by Kipf and
Welling (2016). The goal of GCNs is to calcu-
late the representation of each node in a graph
considering the graph structure. In this paper we
adopt the parametrization proposed by Marcheg-
giani and Titov (2017) where edge labels and di-
rections are explicitly modeled. Formally, given a
directed graph X = (V, E), where V is a set of
nodes, and E is a set of edges. We represent each
node v ∈ V with a feature vector xv ∈ Rd. The
GCN calculates the representation of each node h′v
in a graph using the following update rule:

h′v=ρ
(∑
u∈N (v)

gu,v
(
Wdir(u,v) hu + blab(u,v)

))
,

where N (v) is the set of neighbours of v,
Wdir(u,v) ∈ Rd×d is a direction-specific param-
eter matrix. As Marcheggiani and Titov (2017);
Bastings et al. (2017) we assume there are three
possible directions (dir(u, v) ∈ {in, out, loop}):
self-loop edges ensure that the initial representa-
tion of node hv affects the new representation h′v.
The vector blab(u,v) ∈ Rd is an embedding of
the label of the edge (u, v) . ρ is a non-linearity
(ReLU). gu,v are learned scalar gates which weight
the importance of each edge. Although the main
aim of gates is to down weight erroneous edges
in predicted graphs, they also add flexibility when
several GCN layers are stacked. As with stan-
dard convolutional neural networks (CNNs, (Le-
Cun et al., 2001)), GCN layers can be stacked to
consider non-immediate neighbours.4

Skip Connections Between GCN layers we add
skip connections. Skip connections let the gradi-
ent flows more efficiently through stacked hidden
layers thus making possible the creation of deeper
GCN encoders. We use two kinds of skip connec-
tions: residual connections (He et al., 2016) and
dense connections (Huang et al., 2017). Resid-
ual connections consist in summing input and out-
put representations of a GCN layer hr

v = h′v +
hv. Whilst, dense connections consist in the con-
catenation of the input and output representations
hd
v = [h′v;hv]. In this way, each GCN layer is

directly fed with the output of every layer before
itself.

Decoder The decoder uses an LSTM and a soft
attention mechanism (Luong et al., 2015) over

4We discovered during preliminary experiments that with-
out scalar gates the model ends up in poor local minima, es-
pecially when several GCN layers are used.
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the representation induced by the GCN encoder
to generate one word y at the time. The pre-
diction of word yt+1 is conditioned on the pre-
viously predicted words y1:t encoded in the vec-
tor wt and a context vector ct dynamically cre-
ated attending to the graph representation in-
duced by the GCN encoder as P (yt+1|y1:t, X) =
softmax(g(wt, ct)), where g(·) is a neural net-
work with one hidden layer. The model is trained
to optimize negative log likelihood: LNLL =

−
∑|Y |

t=1 log P (yt|y1:t−1, X)

3 Generation Tasks

In this section, we describe the instantiation of the
input graphX for the generation tasks we address.

3.1 WebNLG Task
The WebNLG task (Gardent et al., 2017a,b) aims
at the generation of entity descriptions from a set
of RDF triples related to an entity of a given cate-
gory (Perez-Beltrachini et al., 2016). RDF triples
are of the form (subject relation object), e.g.,
(Aenir precededBy Castle), and form a graph
in which edges are labelled with relations and ver-
tices with subject and object entities. For instance,
Figure (1a) shows a set of RDF triples related to
the book Above the Veil and its verbalisation. The
generation task involves several micro-planning
decisions such as lexicalisation (followedBy is
verbalised as sequel to), aggregation (sequel to Aenir

and Castle), referring expressions (subject of the
second sentence verbalised as pronoun) and seg-
mentation (content organised in two sentences).

Reification We formulate this task as the gener-
ation of a target description Y from a source graph
X = (V, E) where X is build from a set of RDF
triples as follows. We reify the relations (Baader,
2003) from the RDF set of triples. That is, we see
the relation as a concept in the KB and introduce
a new relation node for each relation of each RDF
triple. The new relation node is connected to the
subject and object entities by two new binary rela-
tions A0 and A1 respectively. For instance, (pre-
cededBy A0 Aenir) and (precededBy A1 Cas-
tle). Thus, E is the set of entities including reified
relations and V a set of labelled edges with labels
{A0, A1}. The reification of relations is useful in
two ways. The encoder is able to produce a hidden
state for each relation in the input; and it permits
to model an arbitrary number of KB relations effi-
ciently.

3.2 SR11Deep Task

The surface realisation shared task (Belz et al.,
2011) proposed two generation tasks, namely shal-
low and deep realisation. Here we focus on the
deep task where the input is a semantic depen-
dency graph that represents a target sentence using
predicate-argument structures (NomBank; (Mey-
ers et al., 2004), PropBank; (Palmer et al., 2005)).
This task covers a more complex semantic repre-
sentation of language meaning; on the other hand,
the representation is closer to surface form. Nodes
in the graph are lemmas of the target sentence.
Only complementizers that, commas, and to infini-
tive nodes are removed. Edges are labelled with
NomBank and PropBank labels.5 Each node is
also associated with morphological (e.g. num=sg)
and punctuation features (e.g. bracket=r).

The source graph X = (V, E) is a semantic de-
pendency graph. We extend this representation to
model morphological information, i.e. each node
in V is of the form (lemma, features). For this
task we modify the encoder, Section 2, to repre-
sent each input node as hv = [hl;hf ], where each
input node is the concatenation of the lemma and
the sum of feature vectors.

4 Experiments

We tested our models on the WebNLG and
SR11Deep datasets. The WebNLG dataset con-
tains 18102 training and 871 development data-
text pairs. The test dataset is split in two sets, test
Seen (971 pairs) and a test set with new unseen
categories for KB entities. As here we are inter-
ested only in the modelling aspects of the struc-
tured input data we focus on our evaluation only
on the test partition with seen categories. The
dataset covers 373 distinct relations from DBPe-
dia. The SR11Deep dataset contains 39279, 1034
and 2398 examples in the training, development
and test partitions, respectively. It covers 117 dis-
tinct dependency relations.6

Sequential Encoders For both WebNLG and
SR11Deep tasks we used a standard sequence-
to-sequence model (Bahdanau et al., 2015; Lu-
ong et al., 2015) with an LSTM encoder as base-
line. Both take as input a linearised version of

5There are also some cases where syntactic labels appear
in the graphs, this is due to the creation process (see (Belz
et al., 2011)) and done to connect graphs when there were
disconnected parts.

6 In both datasets we exclude pairs with >50 target words.
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the source graph. For the WebNLG baseline, we
use the linearisation scripts provided by (Gardent
et al., 2017b). For the SR11Deep baseline we fol-
low a similar linearisation procedure as proposed
for AMR graphs (Konstas et al., 2017). We built a
linearisation based on a depth first traversal of the
input graph. Siblings are traversed in random or-
der (they are anyway shuffled in the given dataset).
We repeat a child node when a node is revisited by
a cycle or has more than one parent. The base-
line model for the WebNLG task uses one layer
bidirectional LSTM encoder and one layer LSTM
decoder with embeddings and hidden units set to
256 dimensions . For the SR11Deep task we used
the same architecture with 500-dimensional hid-
den states and embeddings. All hyperparameters
tuned on the development set.

GCN Encoders The GCN models consist of
a GCN encoder and LSTM decoder. For the
WebNLG task, all encoder and decoder embed-
dings and hidden units use 256 dimensions. We
obtained the best results with an encoder with four
GCN layers with residual connections. For the
SR11Deep task, we set the encoder and decoder
to use 500-dimensional embeddings and hidden
units of size 500. In this task, we obtained the best
development performance by stacking seven GCN
layers with dense connections.

We use delexicalisation for the WebNLG
dataset and apply the procedure provided for the
baseline in (Gardent et al., 2017b). For the
SR11Deep dataset, we performed entity anonymi-
sation. First, we compacted nodes in the tree cor-
responding to a single named entity (see (Belz
et al., 2011) for details). Next, we used a name
entity recogniser (Stanford CoreNLP; (Manning
et al., 2014)) to tag entities in the input with type
information (e.g. person, location, date). Two
entities of the same type in a given input will be
given a numerical suffix, e.g. PER 0 and PER 1.

A GCN-based Generator For the WebNLG
task, we extended the GCN-based model to use
pre-trained word Embeddings (GloVe (Penning-
ton et al., 2014)) and Copy mechanism (See et al.,
2017), we name this variant GCNEC . To this end,
we did not use delexicalisation but rather repre-
sent multi-word subject (object) entities with each
word as a separate node connected with special
Named Entity (NE) labelled edges. For instance,
the book entity Into Battle is represented as (Into

Encoder BLEU METEOR TER

LSTM .526±.010 .38±.00 .43±.01
GCN .535±.004 .39±.00 .44±.02

ADAPT .606 .44 .37
GCNEC .559±.017 .39±.01 0.41±.01
MELBOURNE .545 .41 .40
PKUWRITER .512 .37 .45

Table 1: Test results WebNLG task.

Encoder BLEU METEOR TER

LSTM .377±.007 .65±.00 .44±.01
GCN .647±.005 .77±.00 .24±.01
GCN+feat .666±.027 .76±.01 .25±.01

Table 2: Test results SR11Deep task.

NE Battle). Encoder (decoder) embeddings and
hidden dimensions were set to 300. The model
stacks six GCN layers and uses a single layer
LSTM decoder.

Evaluation metrics As previous works in these
tasks, we evaluated our models using BLEU (Pa-
pineni et al., 2002), METEOR (Denkowski and
Lavie, 2014) and TER (Snover et al., 2006) au-
tomatic metrics. During preliminary experiments
we noticed considerable variance from different
model initialisations; we thus run 3 experiments
for each model and report average and standard
deviation for each metric.

5 Results

WebNLG task In Table 1 we report results on
the WebNLG test data. In this setting, the model
with GCN encoder outperforms a strong base-
line that employs the LSTM encoder, with .009
BLEU points. The GCN model is also more sta-
ble than the baseline with a standard deviation
of .004 vs .010. We also compared the GCNEC

model with the neural models submitted to the
WebNLG shared task. The GCNEC model out-
performs PKUWRITER that uses an ensemble of
7 models and a further reinforcement learning step
by .047 BLEU points; and MELBOURNE by .014
BLEU points. GCNEC is behind ADAPT which
relies on sub-word encoding.

SR11Deep task In this more challenging task,
the GCN encoder is able to better capture the
structure of the input graph than the LSTM en-
coder, resulting in .647 BLEU for the GCN vs.
.377 BLEU of the LSTM encoder as reported in
Table 2. When we add linguistic features to the
GCN encoding we get .666 BLEU points. We also
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WebNLG (William Anders dateOfRetirement 1969 - 09 - 01) (Apollo 8 commander Frank Borman) (William Anders was a crew member of Apollo 8) (Apollo
8 backup pilot Buzz Aldrin)

LSTM William Anders was a crew member of the OPERATOR operated Apollo 8 and retired on September 1st 1969 .
GCN William Anders was a crew member of OPERATOR ’ s Apollo 8 alongside backup pilot Buzz Aldrin and backup pilot Buzz Aldrin .
GCNEC william anders , who retired on the 1st of september 1969 , was a crew member on apollo 8 along with commander frank borman and backup pilot

buzz aldrin .
SR11Deep (SROOT SROOT will) (will P .) (will SBJ temperature) (temperature A1 economy) (economy AINV the) (economy SUFFIX ’s) (will VC be) (be

VC take) (take A1 temperature) (take A2 from) (from A1 point) (point A1 vantage) (point AINV several) (take AM-ADV with) (with A1 reading)
(reading A1 on) (on A1 trade) (trade COORD output) (output COORD housing) (housing COORD and) (and CONJ inflation) (take AM-MOD will)
(take AM-TMP week) (week AINV this)

Gold The economy ’s temperature will be taken from several vantage points this week , with readings on trade , output , housing and inflation .
Baseline the economy ’s accords will be taken from several phases this week , housing and inflation readings on trade , housing and inflation .
GCN the economy ’s temperatures will be taken from several vantage points this week , with reading on trades output , housing and inflation .

Table 3: Examples of system output.

BLEU SIZE
Model none res den none res den

LSTM .543±.003 - - 4.3 - -

GCN
1L .537±.006 - - 4.3 - -
2L .545±.016 .553±.005 .552±.013 4.5 4.5 4.7
3L .548±.012 .560±.013 .557±.001 4.7 4.7 5.2
4L .537±.005 .569±.003 .558±.005 4.9 4.9 6.0
5L .516±.022 .561±.016 .559±.003 5.1 5.1 7.0
6L .508±.022 .561±.007 .558±.018 5.3 5.3 8.2
7L .492±.024 .546±.023 .564±.012 5.5 5.5 9.6

Table 4: GCN ablation study (layers (L) and skip-
connections: none, residual(res) and dense(den)).
Average and standard deviation of BLEU scores
over three runs on the WebNLG dev. set. Number
of parameters (millions) including embeddings.

compare the neural models with upper bound re-
sults on the same dataset by the pipeline model of
Bohnet et al. (2011) (STUMBA-D) and transition-
based joint model of Zhang et al. (2017) (TBDIL).
The STUMBA-D and TBDIL model obtains re-
spectively .794 and .805 BLUE, outperforming
the GCN-based model. It is worth noting that
these models rely on separate modules for syn-
tax prediction, tree linearisation and morphology
generation. In a multi-lingual setting (Mille et al.,
2017), our model will not need to re-train some
modules for different languages, but rather it can
exploit them for multi-task training. Moreover,
our model could also exploit other supervision sig-
nals at training time, such as gold POS tags and
gold syntactic trees as used in Bohnet et al. (2011).

5.1 Qualitative Analysis of Generated Text

We manually inspected the outputs of the LSTM
and GCN models. Table 3 shows examples
of source graphs and generated texts (we in-
cluded more examples in Section A). Both mod-
els suffer from repeated and missing source con-
tent (i.e. source units are not verbalised in
the output text (under-generation)). However,
these phenomena are less evident with GCN-

based models. We also observed that the LSTM
output sometimes presents hallucination (over-
generation) cases. Our intuition is that the strong
relational inductive bias of GCNs (Battaglia et al.,
2018) helps the GCN encoder to produce a more
informative representation of the input; while the
LSTM-based encoder has to learn to produce use-
ful representations by going through multiple dif-
ferent sequences over the source data.

5.2 Ablation Study

In Table 4 (BLEU) we report an ablation study on
the impact of the number of layers and the type
of skip connections on the WebNLG dataset. The
first thing we notice is the importance of skip con-
nections between GCN layers. Residual and dense
connections lead to similar results. Dense connec-
tions (Table 4 (SIZE)) produce models bigger, but
slightly less accurate, than residual connections.
The best GCN model has slightly more parame-
ters than the baseline model (4.9M vs.4.3M).

6 Conclusion
We compared LSTM sequential encoders with a
structured data encoder based on GCNs on the
task of structured data to text generation. On
two different tasks, WebNLG and SR11Deep, we
show that explicitly encoding structural informa-
tion with GCNs is beneficial with respect to se-
quential encoding. In future work, we plan to
apply the approach to other input graph repre-
sentations like Abstract Meaning Representations
(AMR; (Banarescu et al., 2013)) and scoped se-
mantic representations (Van Noord et al., 2018).
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A Supplemental Material

A.1 Training details
We implemented all our models using OpenNMT-
py (Klein et al., 2017). For all experiments we
used a batch size of 64 and Adam (Kingma and
Ba, 2015) as the optimizer with an initial learning
rate of 0.001. For GCN models and baselines we
used a one-layer LSTM decoder, we used dropout
(Srivastava et al., 2014) in both encoder and de-
coder with a rate of 0.3. We adopt early stopping
on the development set using BLEU scores and we
trained for a maximum of 30 epochs.

A.2 More example outputs
Table 5 shows additional examples of generated
texts for source WebNLG and SR11Deep graphs.
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WebNLG (Acharya Institute of Technology sportsOffered Tennis) (Acharya Institute of Technology established 2000) (Tennis
sportsGoverningBody International Tennis Federation)

LSTM The Acharya Institute of Technology was established in 2000 and is governed by the International Tennis Federation
.

GCN The sport of tennis , governed by the International Tennis Federation , is offered at the Acharya Institute of Tech-
nology which was established in 2000 .

GCNEC the acharya institute of technology was established in 2000 and is governed by the international tennis federation .
WebNLG (Acharya Institute of Technology officialSchoolColour Blue , White and Orange) (Acharya Institute of Technology

was given the ’ Technical Campus ’ status by All India Council for Technical Education)
LSTM The Archarya Institute of Technology are blue , white and was given the Acharya Institute of Technology .
GCN The Acharya Institute of Technology was given the ’ Technical Campus ’ status by the All India Council for

Technical Education in LOCATION . The Institute was given the ” Technical Campus ” status by the Acharya
Institute of Technology .

GCNEC acharya institute of technology was given the ’ technical campus ’ status by the all india council for technical
education which has blue , white and orange .

WebNLG (Saranac Lake , New York isPartOf Harrietstown , New York) (Saranac Lake , New York isPartOf Essex County
, New York) (Adirondack Regional Airport cityServed Lake Placid , New York) (Adirondack Regional Airport
cityServed Saranac Lake , New York) (Saranac Lake , New York country United States)

LSTM Adirondack Regional Airport serves the cities of Lake Placid and Saranac Lake ( Harrietstown ) in the United States
.

GCN Adirondack Regional Airport serves the city of Saranac Lake , which is part of Harrietstown , Essex County , New
York , United States .

GCNEC adirondack regional airport serves the cities of lake placid and saranac lake , essex county , new york , united states
. adirondack regional airport serves the city of saranac lake , essex county , new york , united states .

WebNLG (Adisham Hall location Sri Lanka) (Adisham Hall architecturalStyle Tudor Revival architecture) (Adisham Hall
completionDate 1931) (Adisham Hall buildingStartDate 1927)

LSTM Adisham Hall was built in 1927 and completed in 1931 . It was built in the Tudor Revival architecture style and is
located in Sri Lanka .

GCN Construction of Adisham Hall , Sri Lanka began in 1927 and was completed in 1931 .
GCNEC adisham hall , sri lanka , constructed in 1931 , is located in sri lanka . the hall has the architectural style ’ tudor

revival ’ .
SR11Deep (SROOT SROOT say) (say A0 economist) (say A1 be) (be SBJ export) (be VC think) (think A1 export) (think

C-A1 have) (have VC rise) (rise A1 export) (rise A2 strongly) (strongly COORD but) (but CONJ not) (not AINV
enough) (not AINV offset) (offset A1 jump) (jump A1 in) (in A1 import) (jump AINV the) (offset A2 export) (not
AINV probably) (strongly TMP in) (in A1 august) (say P .)

Gold Exports are thought to have risen strongly in August , but probably not enough to offset the jump in imports ,
economists said .

LSTM exports said exports are thought to have rising strongly , but not enough to offset exports in the imports in august .
GCN exports was thought to have risen strongly in august but not probably to offset the jump in imports , economists said

.
SR11Deep (SROOT SROOT be) (be P ?) (be SBJ we) (be TMP be) (be SBJ project) (project A1 research) (be VC curtail) (cur-

tail A1 project) (curtail AM-CAU to) (to A1 cut) (cut A0 government) (cut A1 funding) (funding A0 government)
(to DEP due) (to R-AM-TMP when) (be VC catch) (catch A1 we) (catch A2 with) (with SUB down) (down SBJ
grant) (grant AINV our) (catch P ”) (catch P “)

Gold When research projects are curtailed due to government funding cuts , are we “ caught with our grants down ” ?
LSTM is when research projects is supposed to cut “ due ” projects is caught with the grant down .
GCN when research projects are curtailed to government funding cuts due to government funding cuts , were we caught

“ caught ” with our grant down ?

Table 5: Examples of system output.


