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Abstract
Spelling correction has attracted a lot of atten-
tion in the NLP community. However, mod-
els have been usually evaluated on artificially-
created or proprietary corpora. A publicly-
available corpus of authentic misspellings, an-
notated in context, is still lacking. To address
this, we present and release an annotated data
set of 6,121 spelling errors in context, based
on a corpus of essays written by English lan-
guage learners. We also develop a minimally-
supervised context-aware approach to spelling
correction. It achieves strong results on our
data: 88.12% accuracy. This approach can
also train with a minimal amount of annotated
data (performance reduced by less than 1%).
Furthermore, this approach allows easy porta-
bility to new domains. We evaluate our model
on data from a medical domain and demon-
strate that it rivals the performance of a model
trained and tuned on in-domain data.

1 Introduction

This paper addresses automatic correction of
spelling errors where the misspelled string is not a
valid word in the language. Correcting non-word
spelling errors has a long history in the natural lan-
guage processing research (Kukich, 1992). Ear-
lier approaches were evaluated on spelling errors
from proprietary corpora of native English texts or
artificially generated errors in well-formed texts.
While spell checkers today are essential and ubiq-
uitous, dealing with data in a variety of “noisy”
domains poses particular challenges to traditional
spell checkers. Thus, spelling research has shifted
focus primarily to correcting spelling errors in so-
cial media data, biomedical texts, and texts written
by non-native English writers.

Non-native English speakers account for the
majority of people writing in English today, and
spelling errors are some of the most frequent er-
ror types for these writers (Ng et al., 2014). In

some grammatical error correction approaches re-
searchers apply a spell checker prior to running
a grammar-oriented correction model (Chollam-
patt and Ng, 2018; Chollampatt et al., 2016; Ro-
zovskaya and Roth, 2016). In addition to writing-
assistance feedback, spelling correction for non-
native writers is also utilized in computer-aided
language learning applications and in automatic
scoring systems (Sukkarieh and Blackmore, 2009;
Dikli, 2006; Warschauer and Ware, 2006; Leacock
and Chodorow, 2003).

Spelling correction in learner texts is particu-
larly challenging. Non-native writers have higher
spelling error rates than native writers (Flor et al.,
2015). The types of misspellings produced by
these writers typically differ from errors produced
by native speakers. While the majority of spelling
errors produced by native speakers involve single-
character edits (Damerau, 1964), multi-character
edits are a lot more common among non-native
writers (Flor et al., 2015). Finally, learner data is
more likely to contain other errors or non-standard
usage in context, which may further complicate er-
ror correction (Flor and Futagi, 2012).

Several recent works have specifically ad-
dressed spelling correction in learner texts. How-
ever, they evaluated either on small data sets (Na-
gata et al., 2017) or on proprietary corpora (Flor,
2012). Despite several decades of research on
spelling, there is still no publicly available large-
scale corpus, explicitly and exhaustively annotated
for spelling errors. Without such data, it is difficult
to compare and track research progress in the field.

This paper makes the following contributions:

• We present a corpus of learner essays,
TOEFL-Spell, annotated for spelling errors.
This corpus can be used as a benchmark
corpus to develop state-of-the-art models for
spelling correction (Section 3).
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• We develop a minimally-supervised ap-
proach to spelling correction that combines
contextual and non-contextual information
(Section 4). We show that inclusion of
word embeddings provides information com-
plementary to other contextual features.

• The proposed model is shown to be robust,
evaluated on TOEFL-Spell and on an out-of-
domain data set of clinical notes. The perfor-
mance of our model on the clinical data set
rivals that of the model trained on a corpus of
clinical notes (Section 5).

• Evaluation of the contribution of contextual
features shows that contextual information
provides an error reduction of about 45%, im-
proving the correction accuracy by 10 points
on TOEFL-Spell and by 7 points on the clin-
ical data set.

• Error analysis of the system on TOEFL-Spell
and on the clinical data is presented in Sec-
tion 6.

2 Related Work

A non-word misspelling is a spelling error, such
that the produced string is not a valid word in
the language. This is different from real-word
(context-sensitive) errors, for example confusing
“their” and “there” (Wilcox-O’Hearn et al., 2008).
This section provides an overview of prior work on
correction of non-word spelling errors and avail-
ability of corpora for such research.

2.1 Data Sets for Spelling Research

Traditionally, three areas of research have been
particularly interested in spelling errors: informa-
tion retrieval - for misspellings in queries, English
language learning - for misspellings made by lan-
guage learners, and medical information process-
ing - for misspellings in medical documents. Pre-
vious work used either proprietary data sets or ar-
tificially generated errors. Flor (2012) evaluated
on a large corpus of student essays, but the corpus
is not publicly available. Toutanova and Moore
(2002) and Brill and Moore (2000) similarly eval-
uated on proprietary data sets of typos collected
from native English texts.

Query spelling correction has been an impor-
tant aspect of research in the domain of infor-
mation retrieval (Hasan et al., 2015; Chen et al.,

2007; Li et al., 2006). The MSR-Bing Web Scale
Speller Challenge (Wang and Pedersen, 2011) pre-
sented 5500 short queries, with about 10% of them
containing typographical errors. Recently, Hagen
et al. (2017) presented a large corpus of query mis-
spellings - about 54K queries, with about 9K po-
tential spelling errors. Errors were not explicitly
marked; annotators provided alternative formula-
tions, so spelling errors are deduced from compar-
ing the original and revised formulations.

For non-native spelling errors, Nagata et al.
(2011, 2017) describe a small corpus (25K words)
annotated for various errors, with only 438
spelling error tokens. Mizumoto and Nagata
(2017) refer to a newer version of that corpus, with
30K words and 654 spelling errors.

The NUCLE corpus (Dahlmeier et al., 2013)
contains 1400 essays written by students at the
National University of Singapore, and annotated
using twenty seven error codes. In this corpus,
spelling errors were included in the Mechanical
errors category that lumps together quite different
types of low-level errors - ’punctuation, capitaliza-
tion, spelling and typos’. Thus, spelling errors are
marked explicitly, but not distinctively.

Heilman et al. (2014) released a corpus of 1511
learner sentences (28K words), judged for gram-
maticality on an ordinal scale. The JFLEG corpus
(Napoles et al., 2017) built on top of that data – for
each sentence they added three holistic fluency ed-
its (sentence rewrites) to correct the grammar and
also make the original text more fluent. In this cor-
pus, spelling (or other errros) are not explicitly an-
notated, which makes it difficult to isolate them for
spelling correction research. Moreover, the size of
this corpus is rather small, and there is no context
beyond the sentence level.

The Cambridge Learner Corpus First Certificate
in English (FCE) has about 2500 essays (500K
words), written by learners taking the English pro-
ficiency exam (Yannakoudakis et al., 2011). It was
annotated for 80 error types (Nicholls, 2003), in-
cluding an explicit category for spelling mistakes.
However, on closer analysis, one can find that
many spelling errors are tagged with other error
categories. Thus, its annotation is not directly suit-
able for spelling correction research.

In the biomedical domain, the largest corpus an-
notated for spelling errors is a recently released
data set of clinical notes (Fivez et al., 2017a), with
873 annotated misspellings in sentence context.
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2.2 Approaches to Spelling Correction

Approaches to correcting non-word spelling errors
can be broken down into those that only consider
the characteristics of the target token when rank-
ing correction candidates, and those that also in-
clude the surrounding context. Among the for-
mer are those that compute edit distance (Leven-
shtein, 1966; Damerau, 1964) and phonetic simi-
larity between the misspelling and a candidate cor-
rection (Toutanova and Moore, 2002).

A standard approach to correcting non-word
spelling errors follows the noisy channel model
formulation (Shannon, 1948). It uses edit dis-
tance and phonetic similarity between the mis-
spelling and the candidate correction, and the can-
didate frequency (Kernighan et al., 1990; Church
and Gale, 1991; Toutanova and Moore, 2002).
Weights for different edit operations are estimated
from large training sets of annotated spelling er-
rors. This approach requires a lot of supervision:
thousands of annotated errors paired with their
corrections are used to estimate probabilities as-
sociated with different edits.

The noisy channel model can also incorpo-
rate contextual information. For instance, Brill
and Moore (2000) ranked candidate corrections
by language model scores and reduced the error
rate by 73% on correcting artificially-generated er-
rors in the Brown corpus. However, in general,
adding new features from a variety of sources is
not straightforward in the noisy channel approach.

Contextual features have been used for correct-
ing simulated non-word errors and real-word er-
rors. Carlson and Fette (2007) use a memory-
based model with context features estimated from
the Google Web1T n-gram corpus (Brants and
Franz, 2006). Use of data from the Web for
spelling correction was described by Whitelaw
et al. (2009) and Chen et al. (2007).

Flor (2012) introduced an approach to ranking
candidate corrections that combines edit distance
and phonetic distance with contextual cues, and
evaluated it on errors made by non-native English
speakers. For instance, given ‘forst’, candidate
corrections could include first, forest, frost, and
even forced. In a context like “forst fires in Yel-
lowstone”, forest is a likely candidate. For “forst
in line”, first seems more adequate. That study
demonstrated that contextual features significantly
improve spelling correction accuracy on an an-
notated corpus of spelling errors collected from

TOEFL and GRE exam essays. It significantly
outperformed popular spellers like Aspell and the
speller in MS Word (Flor and Futagi, 2012).

3 The TOEFL-Spell Corpus

We base our data set on the publicly available ETS
Corpus of Non-Native Written English (Blanchard
et al., 2013, 2014), a.k.a. TOEFL11. It consists of
essays written for the TOEFL R© iBT test, which
is used internationally as a measure of academic
English proficiency at institutions of higher learn-
ing where English is the language of instruction.
TOEFL11 contains 12,100 essays from 11 first
language backgrounds; 1,100 essays per language,
sampled evenly from eight prompts (topics), along
with score levels (low/medium/high) for each es-
say. Each prompt poses a proposition and asks
to write an argumentative essay, stating arguments
for or against the proposition.

We sampled 883 essays, selecting among those
that received medium or high score (low-scored
essays are difficult to understand and to annotate).
The data set has 296,141 words. Essay length
ranges from 168 to 672 words, with an average
of 335 words per essay.

The selected essays were annotated by two an-
notators with linguistic background and prior ex-
perience with linguistic annotation. For each es-
say, an automatic dictionary lookup system high-
lighted strings that were not found in dictionary.
For each highlighted string, the annotator had to
determine whether it was indeed misspelled, and
to provide an appropriate correction. To ensure
the annotation is exhaustive, annotators were also
instructed to check for additional misspellings, be-
yond those highlighted.

The resulting annotation contains 6,121 spelling
errors of non-word type, which gives a word er-
ror rate of 2.07%. 35 essays had no spelling er-
rors, while the rest had between one and ten er-
rors per essay. The number of unique misspellings
is 3,958, and the number of unique correction re-
placements is 4,016. In most cases, the same er-
ror has the same correction; the average number
of unique corrections per error is 1.015.

The distribution of misspellings by edit distance
to the correct word is presented in Table 1. The
majority (82.8%) of errors differ from the cor-
rect word by just one character, and an additional
12.6% differ from the correct form by two char-
acters. This is similar to results reported by Flor
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Edit distance Count Percentage (%)
1 5,066 82.76
2 769 12.56
3 198 3.23

> 3 88 1.45
Total 6,121 100

Table 1: Distribution of errors by edit distance to cor-
rect form, in TOEFL-Spell.

et al. (2015) on a different corpus of learner En-
glish. Although the majority of errors constitute
single-token edits, about 5% (296) are fusion er-
rors (e.g. ‘atleast’ for ‘at least’).

Randomly chosen, 76 essays were doubly an-
notated for calculating inter-annotator agreement.
A strict criterion was applied for agreement: two
annotations had to cover exactly the same seg-
ment of text and to specify the same correction.
Inter-Annotator Agreement was 95.6%. (Note that
Kappa statistic cannot be applied to error correc-
tion, as there are too many different responses).

The full set of annotations for TOEFL-Spell is
released and made available for research.1

4 The Spelling Correction Model

In this section, we present our benchmark model
of spelling correction, which extends the model of
Flor (2012). The spelling correction task consists
of three subtasks: detection, generating candidate
corrections, and ranking of the candidates.

4.1 Error Detection

Detection of non-word misspellings is performed
using a dictionary (lexicon). Tokens that are not
in the lexicon are considered to be misspelled.
We use a dictionary that consists of 140,000 sin-
gle words (including inflections), 100,000 multi-
word terms, and 130,000 names (including names
and surnames from various countries). The dictio-
nary includes both American and British spelling
variants, common acronyms, and foreign words.
The dictionary includes lexica from WordNet,2 the
SCOWL project,3 names from US Census Data,4,
Wikipedia lists5, and various sources on the Web.

1https://github.com/
EducationalTestingService/toefl-spell

2https://wordnet.princeton.edu/
3http://wordlist.aspell.net/dicts/
42010 Surnames, on census.gov
5https://en.wikipedia.org/wiki/

Category:Names_by_language

Feature name Description
Non-contextual features

Orthographic Inverse edit distance
similarity
Phonetic Inverse edit distance of
similarity phonetic representations
Word frequency Candidate word

frequency in language
Contextual features

N-gram support N-gram counts in a 4-word
window (from corpus)

Dejavu Is the candidate found
elsewhere in same essay

DejavuSM Is the candidate
found as candidate for
other errors in same essay

Word Using word embeddings to
embeddings estimate candidate word’s

relatedness to context

Table 2: Description of all the features used in the can-
didate ranking module.

4.2 Candidate Generation

Candidates are generated using the dictionary de-
scribed above. Candidates include all dictionary
words within edit distance that does not exceed
half of the length of the misspelled string, with a
maximum distance of 6 characters. Both single-
token and multi-token candidates are generated, to
allow for correction of fusion errors. For each mis-
spelled token, hundreds of correction candidates
are generated, using the Ternary Search Tree data
structure (Bentley and Sedgewick, 1997).

4.3 Ranking of Candidate Corrections

The ranking step is the most challenging one and is
the focus of the most work on non-word spelling
correction (Fivez et al., 2017b). Our model uses
both the features of the misspelling+candidate pair
and the contextual information. The former in-
clude orthographic similarity, phonetic similarity,
and candidate word frequency. The contextual in-
formation includes n-gram support, an estimate of
potential re-use of words in text, and word embed-
dings. The features are listed in Table 2.
Orthographic similarity is computed as inverse
edit distance, 1/(eDist + 1), where eDist is the
edit distance (including transpositions) between
the misspelling and the correction candidate (Lev-
enshtein, 1966; Damerau, 1964).

https://github.com/EducationalTestingService/toefl-spell
https://github.com/EducationalTestingService/toefl-spell
https://wordnet.princeton.edu/
http://wordlist.aspell.net/dicts/
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://en.wikipedia.org/wiki/Category:Names_by_language
https://en.wikipedia.org/wiki/Category:Names_by_language
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Phonetic similarity reflects the intuition that a
good correction should be phonetically similar to
the misspelling. It is computed as 1/(eDistPh+
1), where eDistPh is the edit distance between
the phonetic representation of the misspelling
and the phonetic representation of the candidate.
Phonetic representations are computed using the
Double-Metaphone algorithm (Philips, 2000).
Candidate frequency. A more frequent word is
more likely to be the intended word than a rare
word (Kernighan et al., 1990). Unigram word fre-
quency is computed for each candidate using the
English Wikipedia corpus.
N-gram support. For each correction candi-
date, all n-grams in the window of four context
words on each side are taken into account by the
n-gram support feature. We use co-occurrence
counts computed from the English Wikipedia cor-
pus and weighted as the Positive Normalized PMI
scores (PNPMI). Normalized PMI was introduced
by Bouma (2009), we adapt it as:

log2
p(c, ngram)

p(c)p(ngram)

/
(−log2p(c, ngram)) (1)

PNPMI maps all negative values to zero. For each
candidate c, all n-grams of lengths 2-to-4 words in
the context window are generated, and the PNPMI
values of each c, ngram pair are added.
Dejavu. This feature considers essay-wide con-
text and rewards a candidate that appears in the
same essay. Each occurrence of the candidate (or
its inflection) in the text strengthens the candidate
by the amount 1/sqrt(1 + distance), where dis-
tance is the number of tokens between the mis-
spelling and the position of the candidate in text.
DejavuSM is a feature that caters for systematic
misspellings, when a word is misspelled through-
out the essay (Flor, 2012). For each candidate cor-
rection, we search in the lists of candidate correc-
tions of other misspelled tokens in the text. Each
time the candidate or its inflection is found in
another list, the candidate is strengthened with a
score of SCC/sqrt(1 + distance), where SCC is
the current rescaled overall strength of the corre-
sponding candidate in the other list.
Word embeddings have shown a lot of success
in many NLP applications, especially for estima-
tion of semantic relatedness (Levy and Goldberg,
2014). We use word embeddings to score the con-
textual fit of correction candidates in the local con-
text of a misspelling. The idea is that for a mis-
spelling like “roat”, a correction to “road” should

be strengthened if a word like “drive” is found in
the vicinity. Given a misspelled token, we define
a window of ±15 tokens around it. For every can-
didate, we compute the cosine similarity between
the embedding vector of the candidate and the vec-
tor of each context word, and sum those values.
This is the vector-based contextual fit score for the
candidate. We use the word2vec vectors with 300
dimensions, pre-trained on 100 billion words of
Google News (Mikolov et al., 2013).6

Ranking of candidates. For each misspelled to-
ken, the feature scores of its candidate corrections
are normalized, by dividing the score of the can-
didate feature by the highest-scoring candidate on
that given feature. The final score for each candi-
date correction is computed as a weighted sum of
the feature scores for the candidate:

CandidateScore =
∑
f
wf · Sf

where f ranges over the seven feature types used,
Sf is the normalized score of the current candidate
by feature f , and wf is the predefined weight of
the feature. Learning of weights is described in
Section 5.

Our baseline system implements all the fea-
tures, with the exception of word embeddings.
Due to the feature formulation, each feature group
(e.g. orthographic similarity) requires only one
weight. Feature weights for the baseline model are
adopted from Flor (2012), where they were manu-
ally tuned. In the present work, feature weights are
automatically learned with a linear machine learn-
ing algorithm. We use two linear classifiers – Lo-
gistic Regression and Averaged Perceptron.

5 Experiments

We address the following research questions:

• How does the model compare to a baseline sys-
tem?

• What is the contribution of individual features,
especially those that provide contextual infor-
mation?

• How much training data is needed to learn a ro-
bust model?

• How does the model behave on out-of-domain
data?

6https://code.google.com/archive/p/
word2vec

https://code.google.com/archive/p/word2vec
https://code.google.com/archive/p/word2vec
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5.1 Experiments on TOEFL-Spell

First, we present results on error detection. The
system detected all 6,121 misspellings and flagged
43 additional words (false positives). Thus, the de-
tection recall is 100%, precision is 99.3% and F1
score is 99.65%. This result applies to all experi-
ments with the TOEFL-Spell data set. The candi-
date generation performance is over 99%, i.e. for
over 99% of the errors a valid correction is gener-
ated in the list of candidates. Note that in the can-
didate generation stage, an average of 213 candi-
date corrections is generated for each misspelling
in the TOEFL-Spell corpus.

We now evaluate the performance of the can-
didate ranking component, checking whether the
top-ranked candidate is indeed the gold correction.
The baseline system implements all the features,
except word embeddings, and uses weights from
Flor (2012). For the new approach we add the
feature computed with word-embeddings. Fea-
ture weights are learned automatically, using lin-
ear classifiers – Logistic Regression and Averaged
Perceptron.

We address the first research question above, us-
ing the TOEFL-Spell corpus in a five-fold cross-
validation. Results are presented in Table 3. Each
of the classifiers outperforms the baseline, and
the differences are statistically significant (by two-
proportions z-Test). The difference between Per-
ceptron and Logistic Regression is not significant.
The Perceptron algorithm is the best model, with
over 2 points of absolute improvement, which is
an error reduction of 15%.
Contribution of contextual and non-contextual
features. To assess the contribution of individ-
ual information sources, we perform feature ab-
lation, by removing one feature at a time. Results
are presented in Table 4. The top part of the table
shows feature ablation for non-contextual features.
The most useful is the orthographic similarity: its
removal results in a drop of almost 10 points.
Among the contextual features, n-gram support
and word2vec prove to be the most useful. No-
tably, n-gram features and word2vec supply com-
plementary information, and removing each one
of those results in a drop in performance. Interest-
ingly, the dejavu and dejavuSM features provide
almost no improvement; this result contradicts the
finding by Flor (2012). Eliminating all contextual
features lowers the performance by more than 10
points, to 77.93%. This demonstrates that contex-

Model Accuracy
Baseline (Flor, 2012) 85.97
Logistic Regression (this work) 87.83
Perceptron (this work) 88.12

Table 3: Error correction results for the baseline model
and two linear classifiers on the TOEFL-Spell data set.
Classifiers outperform the baseline (p<0.002).

Feature set Accuracy
Without orthographic sim. 79.84*

Without phonetic sim. 86.47*

Without word freq. 88.07
Without dejavu 88.07
Without dejavuSM 88.01
Without word2vec 86.65*

Without ngram support 82.62*

Without contextual features 77.93*

Without non-contextual features 65.63*

All features 88.12

Table 4: Feature ablation performance (error correc-
tion accuracy %) on TOEFL-Spell. All models are
trained with the Perceptron algorithm in 5-fold cross-
validation. Values marked by * differ significantly from
the value for All features, with p < 0.003.

tual features have a substantial contribution. Over-
all, about 45% of the inadequate corrections pro-
duced by the non-contextual model can be cor-
rected by adding context information.
How much training data is needed for a robust
model. We train the Perceptron classifier, varying
the amounts of training data between 5% and 75%
of the entire data set. We similarly perform ex-
periments using 5-fold cross-validation, with the
exception that we use less data for training each
time. 5% of the training data corresponds to about
240 spelling errors in training. Table 5 demon-
strates that even with the smallest training set the

Amount of training data Accuracy
5% 87.67

10% 87.73
20% 87.86
50% 88.04
75% 88.07
100% 88.12

Table 5: Error correction performance (accuracy %) of
the Perceptron classifier trained on different amounts
of data, on TOEFL-Spell in 5-fold cross-validation.
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drop in performance is less than 1%. In fact, the
differences between the models are not significant.

We emphasize that the noisy-channel model
requires thousands of examples to estimate the
weights of individual edits. In this paper, ortho-
graphic similarity is represented as a single fea-
ture; thus only one weight is estimated (as op-
posed to about 1000 weights for character pairs).
The same is done for our other features, which al-
lows us to train with a small amount of supervi-
sion, couple of hundred of errors.

5.2 Out-of-domain Evaluation

We evaluate the model on a data set from a
very different content domain – clinical medical
records. The genre of clinical free text poses an in-
teresting challenge to the spelling correction task,
since it is notoriously noisy (Fivez et al., 2017a;
Lai et al., 2015).

Clinical corpora typically contain higher
spelling error rates of 7% to 10%, while in native
English text error rates usually range between
0.1% and 0.4% (Ruch et al., 2003). Clinical
text contains domain-specific terminology and
language conventions. Clinical data, in addition
to highly domain-specific vocabulary, can also
be characterized by a large amount of noise, e.g.
the use of non-standard phrases and abbreviations
and is thus particularly challenging (Fivez et al.,
2017a). These properties can render traditional
spell checkers less effective (Patrick et al., 2010).

We use a data set of clinical notes extracted
from the large MIMIC-III medical corpus (John-
son et al., 2016). The data set contains 873 man-
ually annotated misspellings (Fivez et al., 2017a).
The distribution of errors in this data set in terms
of the edit distance is very similar to that in
TOEFL-Spell (see Table 1). In particular, 83%
of errors have edit distance of 1 to the correction,
while another 15% have an edit distance of 2.

The state-of-the-art results on this data set are
reported by Fivez et al. (2017a). Their model
is tuned on artificially generated spelling errors
and trained on word and character embeddings
from MIMIC-III (note that MIMIC-III is the su-
perset of the annotated clinical data set). Their
model outperforms off-the-shelf spelling correc-
tion tools (Aspell) and the noisy channel model.
Similarly to (Fivez et al., 2017a), we accommo-
date to the medical domain by enhancing the dic-
tionary with a comprehensive medical lexicon (the

Model Accuracy Accuracy
off-the-shelf completed

Fivez et al. (2017a) 88.21 93.02
Logistic Regression 87.40 89.35
Perceptron 87.63 89.00

Table 6: Clinical corpus: Performance (accuracy %)
of the state-of-the-art system that uses in-domain data,
and of the models proposed in this work.

Features Accuracy
Without orthographic sim. 58.88
Without phonetic sim. 85.68
Without word freq. 87.51
Without dejavu 87.06
Without dejavuSM 87.74
Without word2vec 84.88
Without ngram support 85.22
Without contextual feats 80.18
Without non-contextual feats 31.73
All features 87.63

Table 7: Feature ablation performance (accuracy %) on
the clinical data set. All models are trained with the
Perceptron algorithm on TOEFL-Spell data.

UMLS R© SPECIALIST Lexicon.7)
Fivez et al. (2017a) note that some of the re-

quired rare corrections were not available even in
the medical lexicon. For this reason, they report
two versions of results: off-the-shelf (using gen-
eral+medical dictionaries), and completed lexicon
(where additional rare terms from the annotations
were added to the dictionary).

Results for off-the-shelf evaluation are reported
in Table 6. Our models were trained on TOEFL-
Spell (the same models reported in Table 3). Note
that our n-gram and embedding features are also
not from the clinical domain. In the off-the-shelf
evaluation, our models achieve performance that is
comparable to the state-of-the-art system that used
in-domain data and was tuned on the clinical cor-
pus. In the completed lexicon evaluation, the Fivez
et al. system is better: it obtained a score of 93.02
vs. 89.35 for our Perceptron algorithm. We be-
lieve that the off-the-shelf performance reflects a
more realistic scenario, as manually adding candi-
dates to the dictionary introduces bias. We further
discuss this in the next section.

7https://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lexicon/current/
web/index.html

 https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
 https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
 https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lexicon/current/web/index.html
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Finally, we evaluate the contribution of each in-
formation source on the clinical data (Table 7).
Orthographic similarity is the most useful fea-
ture, just as it is in the TOEFL-Spell data set,
and removing it results in a very big performance
drop (almost 30 points). Unsurprisingly, the or-
thographic similarity feature works well cross-
domain. The least helpful features are word fre-
quency, dejavu, and dejavuSM. This is consistent
across the two data sets. The word2vec feature
provides a slightly better improvement on the clin-
ical data (3 points vs. 2 on TOEFL-Spell), while
the n-gram feature performs slightly worse (only
2 points improvement, compared to 6 on TOEFL-
Spell). Overall, contextual features contribute 7
points here versus 10 on TOEFL-Spell. This re-
sult is expected given that contextual features are
estimated on out-of-domain data.

In sum, the experiments on the clinical data set
demonstrate that our model is robust and compet-
itive on out-of-domain data. This also stresses the
value of the TOEFL-Spell data set, on which our
model was trained.

6 Error Analysis

We perform error analysis on both data sets. We
first consider cases where the gold correction was
not selected as the top candidate. For the TOEFL-
Spell data set, our best system places the gold cor-
rection at the top of the ranked list in 88% of the
cases. If we consider the top five candidates, the
system finds the gold correction in 96.7% of the
cases. We investigate the cases where the top can-
didate is different from the gold. In 15.25% of the
cases, the top candidate and the gold are inflec-
tional variants of the same lemma (e.g. error: up-
dations, gold: updates, system-best: updating). In
11.4% of cases, the top candidate and the gold are
derivationally related (e.g. error: elastico, gold:
elasticity, system-best: elastic). In 4% of cases,
the top candidate is a close variant of the gold (e.g.
error: donot, gold: do not, system-best: don’t), or
a US/UK spelling variant (e.g. error: bahaviours,
gold: behaviours, system-best: behaviors).

For the clinical data set, the system’s top sug-
gestion is correct in 87.6% of the cases. The gold
correction appears among the top five candidates
in 96.7% of the cases (with off-the-shelf dictionar-
ies). In 29.6% of the cases with an incorrect top
candidate, the top candidate and the gold correc-
tion are inflectional variants of the same lemma, in

14.4% of the cases they are derivationally related,
and in 3% of the cases, the top candidate simply
has an alternative spelling (e.g. cyclosporin and ci-
closporin). Overall, in 43% of the cases the system
selects a morphological variant of the gold correc-
tion. This number is lower for the TOEFL-Spell
corpus (25%).

We also checked why, in the completed lexi-
con evaluation on clinical data, our model does not
perform as well as the one by Fivez et al. (2017a).
It turns out that our model has poor accuracy on
the specially added words (41.38%). Further in-
spection shows that these manually added words
are extremely rare medical terms. As a result, con-
textual features do not fire on them. We expect that
adding medical corpora to train word embeddings
will solve this issue.

Finally, we provide some examples of errors
that our system managed to correct with contex-
tual information but failed to correct without con-
text. An example from the clinical data set: “was
thought to be cold agglutin hemolytic anemia...”.
Without context, the system chooses agglutin →
gluten. With context, the system chooses agglutin
→ agglutinin, because ”cold agglutinin” happens
to be a strong collocation. An example from the
TOEFL-Spell data set: “countries such as eng-
land, fance and the usa are...”. Without context,
the system prefers fance → fence, but with con-
text, it correctly chooses fance→ france.

7 Conclusions

This paper addressed the problem of correcting
non-word spelling errors, with a focus on errors
occurring in noisy natural data. We presented
TOEFL-Spell, a publicly-available large data set
of authentic misspellings annotated in context.
This data set should facilitate further research on
spelling correction for noisy data.

We also presented a minimally-supervised
model for spelling correction that utilizes non-
contextual and contextual features, and does not
require a lot of training data. The model demon-
strated a state-of-the-art performance on data sets
from two noisy domains: learner data and clinical
notes. On the latter, competitive performance was
achieved, compared to a model developed specif-
ically for the medical domain and trained on in-
domain clinical data. We plan to extend this model
for handling real-word spelling errors.
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