
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 183–190
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

183

CUNI System for the Building Educational Applications 2019
Shared Task: Grammatical Error Correction

Jakub Náplava and Milan Straka
Charles University,

Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics

{naplava,straka}@ufal.mff.cuni.cz

Abstract
In this paper, we describe our systems submit-
ted to the Building Educational Applications
(BEA) 2019 Shared Task (Bryant et al., 2019).
We participated in all three tracks. Our models
are NMT systems based on the Transformer
model, which we improve by incorporating
several enhancements: applying dropout to
whole source and target words, weighting tar-
get subwords, averaging model checkpoints,
and using the trained model iteratively for cor-
recting the intermediate translations. The sys-
tem in the Restricted Track is trained on the
provided corpora with oversampled “cleaner”
sentences and reaches 59.39 F0.5 score on the
test set. The system in the Low-Resource
Track is trained from Wikipedia revision histo-
ries and reaches 44.13 F0.5 score. Finally, we
finetune the system from the Low-Resource
Track on restricted data and achieve 64.55
F0.5 score, placing third in the Unrestricted
Track.

1 Introduction

Starting with the 2013 and 2014 CoNLL Shared
Tasks on grammatical error correction (GEC),
much progress has been done in this area. The
need to correct a variety of error types lead most
researchers to focus on models based on ma-
chine translation (Brockett et al., 2006) rather than
custom designed rule-based models or a combi-
nation of single error classifiers. The machine
translation systems turned out to be particular-
ity effective when Junczys-Dowmunt and Grund-
kiewicz (2016) presented state-of-the-art statisti-
cal machine translation system. Currently, mod-
els based on statistical and neural machine trans-
lation achieve best results: in restricted settings
with training limited to certain public training
sets (Zhao et al., 2019); unrestricted settings with
no restrictions on training data (Ge et al., 2018);
and also in low-resource track where the training

data should not come from any annotated corpora
(Lichtarge et al., 2018).1

In this paper, we present our models and their
results in the restricted, unrestricted, and low-
resource tracks. We start with a description of
related work in Section 2. We then describe our
systems together with the implementation details
in Section 3. Section 4 is dedicated to our results
and ablation experiments. Finally, in Section 5 we
conclude the paper with some proposals on future
work.

2 Related Work

Transformer (Vaswani et al., 2017) is currently one
of the most popular architectures used in machine
translation. Its self-attentive layers allow better
gradient flow when compared to recurrent neural
models and the masking in decoder provides faster
training. Junczys-Dowmunt et al. (2018) propose
several improvements for training Transformer on
GEC: using dropout on whole input words, assign-
ing weight to target words based on their align-
ment to source words, and they also propose to
oversample sentences from the training set in or-
der to have the same error rate as the test set.

Majority of work in grammatical error correc-
tion has been done in restricted area with a fixed
set of annotated training datasets. Lichtarge et al.
(2018), however, show that training a neural ma-
chine translation system from Wikipedia edits can
lead to surprisingly good results. As the authors
state, corpus of Wikipedia edits is only weakly
supervised for the task of GEC, because most of
the edits are not corrections of grammatical errors
and also they are not human curated specifically
for GEC. To overcome these issues, the authors
use iterative decoding which allows for incremen-
tal corrections. In other words, the model can re-

1Note that in this settings Wikipedia revisions are allowed



184

peatedly translate its current output as long as the
translation is more probable then keeping the sen-
tence unchanged. Similar idea is also presented in
(Ge et al., 2018), where the translation system is
trained with respect to the incremental inference.

3 Our System

In this section, we present our three systems sub-
mitted to each track of the BEA 2019 Shared Task.
We start with the Restricted Track In Section 3.1,
where we present a series of improvements to the
baseline Transformer model. In Section 3.2, we
describe our model trained on Wikipedia revisions
which was submitted to the Low-Resource Track.
Finally, in Section 3.3, we describe the model sub-
mitted to the Unrestricted Track.

All our models are based on the Trans-
former model from Tensor2Tensor framework ver-
sion 1.12.0.2

3.1 Restricted Track

In the Restricted Track, we use the 5 pro-
vided datasets for system development: FCE v2.1
(Yannakoudakis et al., 2011), Lang-8 Corpus of
Learner English (Mizumoto et al., 2011; Tajiri
et al., 2012), NUCLE (Dahlmeier et al., 2013),
Write & Improve (W&I) and LOCNESS v2.1
(Bryant et al., 2019; Granger, 1998). From Lang-
8 corpus, we took only the sentences annotated by
annotators with ID 0 (A0) and ID 1 (A1). All but
the development sets from W&I and LOCNESS
datasets were used for training. The simple statis-
tics of these datasets are presented in Table 1. The
displayed error rate is computed using maximum
alignment of original and annotated sentences as a
ratio of non-matching alignment edges (insertion,
deletion, and replacement).

We use the transformer base configuration of
Tensor2Tensor as our baseline solution. The train-
ing dataset consists of 1 230 231 sentences. Af-
ter training, beam search decoding is employed
to generate model corrections and we choose the
checkpoint with the highest accuracy on a devel-
opment set concatenated from the W&I and LOC-
NESS development sets.

3.1.1 Transformer Big
The first minor improvement was to use the
transformer big configuration instead of trans-
former base. This configuration has bigger capac-

2https://github.com/tensorflow/tensor2tensor

Dataset Sentences
Average

error rate

Lang8
A0 1 037 561 13.33 %
A1 67 975 25.84 %

FCE v2.1
train 28 350 11.31 %
dev 2 191 11.67 %
test 2 695 12.87 %

NUCLE 57 151 6.56 %

W&I

train A 10 493 18.13 %
train B 13 032 11.68 %
train C 10 783 5.62 %
dev A 1 037 18.32 %
dev B 1 290 12.46 %
dev C 1 069 5.91 %

LOCNESS dev N 998 4.72 %

Table 1: Statistics of available datasets. The error
rate is computed as a ratio of non-matching alignment
edges.

ity and as Popel and Bojar (2018) show, it reaches
substantially better results on certain translation
tasks.

3.1.2 Source and Target Word Dropout
Dropout (Srivastava et al., 2014) is a regulariza-
tion technique that turned out to be particularly ef-
fective in the field of neural networks. It works
by masking several randomly selected activations
during training, which should prevent the neural
network from overfitting the training data. In the
area of NLP, it is a common approach to apply
dropout to whole embeddings, randomly zeroing
certain dimensions. As Junczys-Dowmunt et al.
(2018) show, we can also apply dropout to whole
source words to reduce trust in the source words.
Specifically, full source word embedding vector is
set to zero vector with probability p. We further
note this probability as the source word dropout.

To make regularization even more effective, we
decided to dropout also whole target word embed-
dings. We refer to the probability with which we
dropout entire target word embeddings as the tar-
get word dropout.

3.1.3 Edited MLE
Compared to traditional machine translation task,
whose goal is to translate one language to another,
GEC operates on a single language. Together with
the relatively low error rate, the translation system
may converge to a local optimum, in which the



185

model copies the input unchanged to the output.
To overcome this issue, Junczys-Dowmunt et al.
(2018) propose to change the maximum likelihood
objective to assign bigger weights to target tokens
different from the source tokens. More specifi-
cally, they start by computing the word alignment
between each source x = (x0, x1, ..xN ) and tar-
get sentence y = (y0, y1, ...yM ). Then they set the
weight λt of the target word yt to 1 if it is matched,
and otherwise, if it is an insertion or replacement
of a source token, λt is set to some predefined con-
stant. Modified log-likelihood training objective
then takes following form:

L(x, y) = −
M∑
t=1

λt logP (yt|x, y0, . . . , yt−1).

3.1.4 Data oversampling
It is crucial to have training data from the same
domain as the test data, i.e., training data con-
taining similar errors with similar distribution as
the test data. As we can see in the Table 1, the
vast majority of our training data comes from the
Lang-8 corpus. However, as it is quite noisy and
of low quality, it matches the target domain the
least. Therefore, we decided to oversample other
datasets. Specifically, we add the W&I training
data 10 times, all FCE data 5 times and NUCLE
corpus 5 times to the training data. The oversam-
pled training set consists of 1 900 551.

In Table 1, we can also see token error rate of
each corpus. The development error rate in W&I
and LOCNESS varies from 5.91% up to 18.32%.
This gives us a basic idea how the test data looks
like, and since the test data does not contain anno-
tations from which set (A, B, C, N) it comes, we
decided not to optimize the training data against
the token error rate any further.

3.1.5 Checkpoint Averaging
Popel and Bojar (2018) report that averaging sev-
eral last Transformer model checkpoints during
training leads both to lower variance results and
also to slightly better performance than the base-
line without averaging. They propose to save
checkpoints every one hour and average either 8
or 16 last checkpoints. Since we found out that
the model overfits the oversampled dataset quite
quickly, we save checkpoints every 30 minutes.

3.1.6 Iterative decoding
A system for grammatical error correction should
correct all errors in the text while keeping the rest

Data: input sent; max iters; threshold
for iter in [1,2,..,max iters] do

beam results = decode(input sent);
identity cost = +∞;
non identity cost = +∞;
non identity sent = None
for beam item in beam results do

text = beam item[”text”];
cost = beam item[”cost”];
if text == input sent then

identity cost = cost;
else if cost < non identity cost
then

non identity cost = cost;
non identity sent = text;

end
if non identity cost ≤

threshold · identity cost then
input sent = non identity sent;

else
break;

end
end
return input sent;

Algorithm 1: Iterative decoding algorithm

of the text intact. In many situations with multi-
ple errors in a sentence, the trained system, how-
ever, corrects only a subset of its errors. Lichtarge
et al. (2018) and Ge et al. (2018) propose to use
the trained system iteratively to allow the sys-
tem to correct certain errors during further itera-
tions. Iterative decoding is done as long as the
cost of the correction is less than the cost of the
identity translation times a predefined constant.
While Lichtarge et al. (2018) use the same trained
model log-likelihoods as the cost function, Ge
et al. (2018) utilize an external language model for
it. Because the restricted track does not contain
enough training data to train a quality language
model, we adopted the first approach and utilize
the trained system log-likelihoods as a stopping
criterion.

The iterative decoding algorithm we use is pre-
sented in Algorithm 1. Note that when the re-
sulting beam does not contain the identical (non-
modified) sentence, the correction with the lowest
cost is returned regardless of the provided thresh-
old. We adopted this approach for two reasons
– efficiently obtaining the log-likelihood of the
identical sentence would require non-trivial mod-



186

ification of the Tensor2Tensor framework, and for
threshold > 1 (i.e., allow generating changes
which are less likely than identical sentence) the
results are the same.

3.1.7 Implementation Details

Apart from the first experiment in which we use
transformer base configuration, all our experi-
ments are based on transformer big architecture.
We use Adafactor optimizer (Shazeer and Stern,
2018), linearly increasing the learning rate from 0
to 0.011 over the first 8000 steps, then decrease it
proportionally to the number of steps after that.3

We also experimented with Adam optimizer with
default learning rate schedule, however, training
converged poorly. We hypothesise that this was
caused by the higher learning rate.

All systems are trained on 4 Nvidia P5000
GPUs for approximately 2 days. The vocabu-
lary consists of approximately 32k most common
word-pieces, batch size is 2000 word-pieces per
each GPU and all sentences with more than 150
word-pieces are discarded. Model checkpoints are
saved every 30 minutes. We ran a grid search to
find values of all hyperparameters described in the
previous sections.

At evaluation time, we run iterative decoding
using a beam size of 4. Beam-search length-
balance decoding hyperparameter alpha is set to
0.6. This applies to all further experiments.

3.2 Low-Resource Track

The dataset for our experiments in the Low-
Resource Track consists of nearly 190M seg-
ment pairs extracted from Wikipedia XML revi-
sion dumps. To acquire these, we downloaded
all English Wikipedia revision dumps (155GB in
size) and processed them with the WikiRevision
dataset problem from Tensor2Tensor. The pro-
cessing pipeline extracts individual pages with
chronological snapshots, removes all non-text ele-
ments and downsamples the snapshots. With low
probability, additional spelling noise is added by
either inserting a random character, deleting a ran-
dom character, transposing two adjacent charac-
ters or replacing a character with a random one.
With the same low probability, a random text sub-
string (up to 8 characters) may also be replaced
with a marker, which should force the model to

3We use 8000 warmup steps and learn-
ing rate schedule=rsqrt decay

learn infilling. Finally, the texts from two consec-
utive snapshots are aligned and sequences between
matching segments are extracted to form a training
pair. Only 4% of identical samples are preserved.

Despite having an enormous size compared to
1.2M sentences in the Restricted Track, the train-
ing pairs extracted from Wikipedia are extremely
noisy, containing a lot of edits that are in no sense
grammatical correction. It is also worth noting that
the identical data modified by the spelling and in-
filling operations form nearly 50% of the training
pairs.

Since we want to re-use the system in other sce-
narios, we train the model on the original (untok-
enized) training data. To evaluate the model on the
BEA development and test data, we detokenize the
data using Moses,4 run model inference and finally
tokenize corrected sentences using spaCy.5

The training segments may contain newline and
tab symbols; therefore, we applied additional post-
processing in which we replaced both these sym-
bols with spaces.

Because overfitting should not be an issue
with the Wikipedia data, we decided to use
transformer clean big tpu configuration, follow-
ing Lichtarge et al. (2018). This configura-
tion, compared to transformer big, performs no
dropouts. The vocabulary consists of approxi-
mately 32k most common word-pieces, batch size
is 2000 word-pieces per each GPU and all sen-
tences with more than 150 word-pieces are dis-
carded. We train the model for approximately 10
days on 4 Nvidia P5000 GPUs. After training, the
last 8 checkpoints saved in 1 hour intervals are av-
eraged. Finally, we run a grid search to find opti-
mal values of threshold and max iters in iterative
decoding algorithm.

3.3 Unrestricted Track

Our system submitted to the Unrestricted Track
is the best system from the Low-Resource Track
finetuned on the oversampled training data as de-
scribed in Section 3.1.4. Since our system in
the Unrestricted Track was trained on detokenized
data, the training sentences for finetuning were
also detokenized. The tokenization and detok-
enization was done in the same way as described
in Section 3.2.

4We use mosestokenizer v1.0.0 and its detokenizer.
5We use spaCy v1.9.0 and the en core web sm-1.2.0

model.



187

Track P R F0.5 Best Rank
Restricted 67.33 40.37 59.39 69.47 10 / 21
Unrestricted 68.17 53.25 64.55 66.78 3 / 7
Low Resource 50.47 29.38 44.13 64.24 5 / 9

Table 2: Official shared task F0.5 scores on the test set.

System A B C N Combined
Transformer-base architecture 39.98 32.68 23.97 14.49 32.47
Transformer-big architecture 39.70 35.13 26.22 20.20 34.20
+ 0.2 src drop, 0.1 tgt drop, 3 MLE 42.06 38.25 28.72 23.80 38.15

+ Extended dataset 45.99 41.79 32.52 27.89 40.86
+ Averaging 8 checkpoints 47.90 44.13 36.19 29.05 43.29

+ Iterative decoding 48.75 45.46 37.09 30.19 44.27

Table 3: Development combined F0.5 score of incremental improvements of our system.

We finetune the system with the Adafactor op-
timizer. The learning rate linearly increases from
0 to 0.0003 over the first 20 000 steps and then re-
mains constant. We employ source word dropout,
target word dropout and weighted MLE. The train-
ing data for finetuning and the rest of the training
scheme are identical to Section 3.1.7.

4 Results

We now present the results of our system. Addi-
tionally, we present several ablation experiments,
which are evaluated on the concatenation of W&I
and LOCNESS development sets (the Dev com-
bined).

4.1 Shared Task Results

The official results of our three systems on the
blind test set are presented in Table 2. All our
systems have substantially higher precision than
recall. It is an interesting observation that the sys-
tem in the unrestricted track has similar precision
as the model in the restricted track while having
higher recall.

4.2 Restricted Track

The first experiment we conducted is devoted to
the incremental enhancements that we proposed in
Section 3.1. As Table 3 indicates, applying each
enhancement results in higher performance on the
development set. By applying all incremental im-
provements, total F0.5 score on the development
set increases by 11.8%.

We improved the F0.5 score by adding

Source Target
MLE

Dev
word word combined

dropout dropout F0.5

0 0 1 34.20
0.1 37.89
0.2 38.26

0.1 35.43
0.2 33.98

2 34.56
3 34.28
4 34.17

0.2 0.1 37.89
0.2 3 38.68
0.2 0.1 3 38.15

Table 4: The effect of source word dropout, target word
dropout, and MLE weight on development combined
F0.5 score.

source word dropout, target word dropout and
MLE weighting by almost 4%. To find out opti-
mal values of all three hyper-parameters, we ran
a small grid search. The results of this experi-
ment are presented in Table 4. The source-word
dropout improves the results the most, MLE pro-
vides minor gains, while the influence of target-
word dropout on the results is unclear.

In the next experiment, we examined the effect
of checkpoint averaging. Table 5 presents results
of the model without averaging and with averag-
ing 4, 6, and 8 model checkpoints. The best results
are achieved when 8 checkpoints are used and the
results indicate that the more checkpoints are av-



188

1 2 3 4 5 6 7
Number of iterations

0.80

0.84

0.88

0.92

0.96

1.00

1.04

1.08

1.12

1.16

1.20

1.24

1.28

1.32

1.36

1.40

1.44

1.48

Th
re

sh
ol

d

42.8

43.2

43.6

44.0

44.4

Figure 1: Performance of iterative decoding depending
on number of iterations and threshold parameters.

eraged the better the results are.
Finally, we inspect the effect of iterative decod-

ing. Specifically, we run an exhaustive grid search
to find optimal values of threshold and max iters.
The results of this experimented are visualised in
Figure 1. We can see that increasing threshold
from 1 to values around 1.20 leads to substan-
tially better results. Moreover, using more itera-
tions also has a positive impact on the model per-
formance. Both of these improvements are caused
by the model generating more corrections which
are deemed less likely to the model, i.e., we in-
crease recall at the expense of precision.

4.3 Low-Resource Track

We train following models in the Low-Resource
Track:

1. the transformer big configuration with

Checkpointing Dev combined F0.5

No checkpointing 41.55
Averaging 4 checkpoints 43.00
Averaging 6 checkpoints 43.13
Averaging 8 checkpoints 43.29

Table 5: Maximum development combined F0.5 score
achieved by averaging the given number of check-
points.

ID Model
Dev

combined
F0.5

1
transformer big

22.03
0.2 src drop, 0.1 tgt drop

2
transformer clean big tpu

26.05
no src drop, no tgt drop

3
transformer clean big tpu

24.80
0.2 src drop, 0.1 tgt drop

4
transformer clean big tpu

21.16
no spelling or infillment errors

Table 6: Development combined F0.5 score achieved
with different models in the Low-Resource Track.

input word dropout set to 0.2 and tar-
get word dropout to 0.1 – settings similar to
the best system in the Restricted Track but
without edited MLE;

2. the transformer clean big tpu configuration
– this configuration uses no internal dropouts;

3. the transformer clean big tpu configu-
ration with input word dropout 0.2 and
target word dropout 0.1;

4. the transformer clean big tpu configura-
tion trained on sentences extracted from
Wikipedia revisions without introducing
additional spelling errors and infillment
marker.

All but the fourth model use the training data as
described in Section 3.2 and the training scheme
is in all models identical. The results of all models
are presented in Table 6.

The best results are achieved with the second
model which performs no dropouts. When we in-
corporate source and target word dropouts in the
third experiment, the performance deteriorates by
more than 1%. When we also add Transformer in-



189

1 2 3 4 5 6 7
Number of iterations

0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12

Th
re

sh
ol

d

24.6

25.2

25.8

26.4

27.0

Figure 2: Performance of iterative decoding depending
on number of iterations and threshold parameters.

ternal dropouts in the first experiment, the perfor-
mance drops by additional 2.8%. This confirms
our assumption that the enormous amount of data
is strong enough regularizer and the usage of ad-
ditional regularizers leads to worse performance.

The results of the fourth model, which was
trained on data without additional spelling and in-
fillment noise, are almost 5% worse than when
training on data with this noise. It would be an
interesting experiment to evaluate the effect of
spelling and infillment noise separately, but this
was not done in this paper.

We also run an exhaustive grid search to find op-
timal values of threshold and max iters in iterative
decoding. As we can see in Figure 2, the optimal
value of threshold is now below 1 indicating that
precision is now increased at the expense of recall.
A performance gain in using more than one itera-
tion is clearly visible.

4.4 Unrestricted Track
In the Unrestricted Track, we tried finetuning the
pretrained system with two different learning rate
schedules:

• linearly increase learning rate from 0 to 0.011
over the first 8000 steps, then decrease it
proportionally to the number of steps after
that – exactly same as while training system
from scratch in the Restricted Track (see Sec-
tion 3.1.7);

• linearly increase learning rate from 0 to 3e-4
then keep the learning rate constant as pro-
posed by Lichtarge et al. (2018).

All other hyper-parameters and the training pro-
cess remain the same as described in Section 3.3.

The first finetuning scheme overfitted the train-
ing corpus quite quickly while reaching score of
48.33. The second scheme converged slower and
reached a higher score of 48.82.

5 Conclusion

We have presented our three systems submitted
to the BEA 2019 Shared Tasks. By employ-
ing larger architecture, source and target word
dropout, edited MLE, dataset extension, check-
point averaging, and iterative decoding, our sys-
tem reached 59.39 F0.5 score in the Restricted
Track, finishing 10th out of 21 participants.

In the Low Resource Track, we utilized
Wikipedia revision edits as a training data, reach-
ing 44.14 F0.5 score. Finally, we finetuned this
model using the annotated training data, obtaining
65.55 F0.5 score in the Unrestricted Track, ranking
3rd out of 7 submissions.

As future work, we would like to explore itera-
tive decoding algorithm more thoroughly. Specif-
ically, we hope that allowing threshold parameter
to change in each iteration might provide gains.
We would also like to train systems on Wikipedia
revisions in other languages.

Acknowledgements

The work described herein has been supported
by OP VVV VI LINDAT/CLARIN project
(CZ.02.1.01/0.0/0.0/16 013/0001781) and it has
been supported and has been using language
resources developed by the LINDAT/CLARIN
project (LM2015071) of the Ministry of Educa-
tion, Youth and Sports of the Czech Republic.



190

This research was also partially supported by SVV
project number 260 453 and GAUK 578218 of the
Charles University.

References
Chris Brockett, William B Dolan, and Michael Gamon.

2006. Correcting esl errors using phrasal smt tech-
niques. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 249–256. Association for
Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 Shared
Task on Grammatical Error Correction. In Proceed-
ings of the 14th Workshop on Innovative Use of NLP
for Building Educational Applications. Association
for Computational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In Pro-
ceedings of the eighth workshop on innovative use
of NLP for building educational applications, pages
22–31.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching
human-level performance in automatic grammatical
error correction: An empirical study. arXiv preprint
arXiv:1807.01270.

Sylviane Granger. 1998. The computer learner corpus:
A versatile new source of data for SLA research. In
Sylviane Granger, editor, Learner English on Com-
puter, pages 3–18. Addison Wesley Longman, Lon-
don and New York.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
arXiv preprint arXiv:1605.06353.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as
a low-resource machine translation task. arXiv
preprint arXiv:1804.05940.

Jared Lichtarge, Christopher Alberti, Shankar Kumar,
Noam Shazeer, and Niki Parmar. 2018. Weakly su-
pervised grammatical error correction using iterative
decoding. arXiv preprint arXiv:1811.01710.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In Pro-
ceedings of 5th International Joint Conference on
Natural Language Processing, pages 147–155.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
esl learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2,
pages 198–202. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 180–189. Association for Computational
Linguistics.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical er-
ror correction via pre-training a copy-augmented
architecture with unlabeled data. arXiv preprint
arXiv:1903.00138.


