@inproceedings{korrel-etal-2019-transcoding,
title = "Transcoding Compositionally: Using Attention to Find More Generalizable Solutions",
author = "Korrel, Kris and
Hupkes, Dieuwke and
Dankers, Verna and
Bruni, Elia",
editor = "Linzen, Tal and
Chrupa{\l}a, Grzegorz and
Belinkov, Yonatan and
Hupkes, Dieuwke",
booktitle = "Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-4801/",
doi = "10.18653/v1/W19-4801",
pages = "1--11",
abstract = "While sequence-to-sequence models have shown remarkable generalization power across several natural language tasks, their construct of solutions are argued to be less compositional than human-like generalization. In this paper, we present seq2attn, a new architecture that is specifically designed to exploit attention to find compositional patterns in the input. In seq2attn, the two standard components of an encoder-decoder model are connected via a transcoder, that modulates the information flow between them. We show that seq2attn can successfully generalize, without requiring any additional supervision, on two tasks which are specifically constructed to challenge the compositional skills of neural networks. The solutions found by the model are highly interpretable, allowing easy analysis of both the types of solutions that are found and potential causes for mistakes. We exploit this opportunity to introduce a new paradigm to test compositionality that studies the extent to which a model overgeneralizes when confronted with exceptions. We show that seq2attn exhibits such overgeneralization to a larger degree than a standard sequence-to-sequence model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="korrel-etal-2019-transcoding">
<titleInfo>
<title>Transcoding Compositionally: Using Attention to Find More Generalizable Solutions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kris</namePart>
<namePart type="family">Korrel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verna</namePart>
<namePart type="family">Dankers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elia</namePart>
<namePart type="family">Bruni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While sequence-to-sequence models have shown remarkable generalization power across several natural language tasks, their construct of solutions are argued to be less compositional than human-like generalization. In this paper, we present seq2attn, a new architecture that is specifically designed to exploit attention to find compositional patterns in the input. In seq2attn, the two standard components of an encoder-decoder model are connected via a transcoder, that modulates the information flow between them. We show that seq2attn can successfully generalize, without requiring any additional supervision, on two tasks which are specifically constructed to challenge the compositional skills of neural networks. The solutions found by the model are highly interpretable, allowing easy analysis of both the types of solutions that are found and potential causes for mistakes. We exploit this opportunity to introduce a new paradigm to test compositionality that studies the extent to which a model overgeneralizes when confronted with exceptions. We show that seq2attn exhibits such overgeneralization to a larger degree than a standard sequence-to-sequence model.</abstract>
<identifier type="citekey">korrel-etal-2019-transcoding</identifier>
<identifier type="doi">10.18653/v1/W19-4801</identifier>
<location>
<url>https://aclanthology.org/W19-4801/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>1</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transcoding Compositionally: Using Attention to Find More Generalizable Solutions
%A Korrel, Kris
%A Hupkes, Dieuwke
%A Dankers, Verna
%A Bruni, Elia
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Belinkov, Yonatan
%Y Hupkes, Dieuwke
%S Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F korrel-etal-2019-transcoding
%X While sequence-to-sequence models have shown remarkable generalization power across several natural language tasks, their construct of solutions are argued to be less compositional than human-like generalization. In this paper, we present seq2attn, a new architecture that is specifically designed to exploit attention to find compositional patterns in the input. In seq2attn, the two standard components of an encoder-decoder model are connected via a transcoder, that modulates the information flow between them. We show that seq2attn can successfully generalize, without requiring any additional supervision, on two tasks which are specifically constructed to challenge the compositional skills of neural networks. The solutions found by the model are highly interpretable, allowing easy analysis of both the types of solutions that are found and potential causes for mistakes. We exploit this opportunity to introduce a new paradigm to test compositionality that studies the extent to which a model overgeneralizes when confronted with exceptions. We show that seq2attn exhibits such overgeneralization to a larger degree than a standard sequence-to-sequence model.
%R 10.18653/v1/W19-4801
%U https://aclanthology.org/W19-4801/
%U https://doi.org/10.18653/v1/W19-4801
%P 1-11
Markdown (Informal)
[Transcoding Compositionally: Using Attention to Find More Generalizable Solutions](https://aclanthology.org/W19-4801/) (Korrel et al., BlackboxNLP 2019)
ACL