
Identifying grammar rules for language education with dependency
parsing in German

Eleni Metheniti Pomi Park
DFKI

Stuhlsatzenhausweg 3
66123, Saarbrücken

firstname.lastname@dfki.de

Kristina Kolesova Günter Neumann

Abstract

We propose a method of determining the syntactic difficulty of a sentence, using syntactic pat-
terns that identify grammatical rules on dependency parses. We have constructed a novel query
language based on constraint-based dependency grammars and a grammar of German rules (rel-
evant to primary school education) with patterns in our language. We annotated these rules with
a difficulty score and grammatical prerequisites and built a matching algorithm that matches the
dependency parse of a sentence in CoNLL-U format with its relevant syntactic patterns. We
achieved 96% precision and 95% recall on a manually annotated set of sentences, and our best
results on using parses from four parsers are 88% and 84% respectively.

1 Introduction

Language teaching on beginner and elementary levels, even for native speakers, brings the challenge
of presenting grammatical phenomena which are familiar, unconsciously familiar or unknown to the
learner, in a formal and repetitive way so that the learner will be able to understand and remember them.
The presentation of these phenomena to the learner should be consistent, to establish correct patterns,
repeated, to facilitate learning, and of gradual difficulty and infrequency, to ensure that the easier struc-
tures are acquired before the more difficult ones. The iRead project, in which we are scientific partners,
aims to create learning applications for children in primary education, in which the user will be able to
read and play with language content tailored to their learning needs, e.g. games that require the user
to choose the correct morpheme, phoneme or part-of-speech to complete a pattern. Our roles are, first,
to provide learning resources for native German primary school learners (ages 6-9) and, second, to pro-
vide a syntactic tool for the analysis of sentences and texts (a CoNLL–U multilingual dependency parser
(Volokh and Neumann, 2012)) and a formalism that can be used to represent grammatic phenomena and
query them from dependency parses. In this paper, we will be focusing on how we created our syntactic
pattern formalism, the algorithm to match patterns with sentences, and the language resources that we
used alongside our pattern matching tool, in order to find the grammatical rules that are applicable in a
sentence.

The reason we decided to create our own query language was the need to be able to create very restric-
tive patterns that would almost never be found in the text erroneously or overzealously; these patterns
express grammatical phenomena taught in school to young learners, and our margin for incorrect matches
of a grammar rule with text is very limited. In addition, our language should be very descriptive but also
human readable, so that our partners will be able to create grammatical patterns for other languages
without extensive knowledge on logical operators and regular expressions. Finally, we opted to create a
query language whose search relies on dependency parsing, and not on the surface structure of a clause.
We will present our query language and the grammatical rule patterns that we have created for German
primary school learners, and we will also present the matching algorithm we built to match these rule
patterns to sentences from our corpus of children’s texts. Moreover, we will be evaluating our matching
algorithm’s performance on this corpus with parses from our and other parsers; the reason we are not
using more complex text is because our patterns are made to reflect syntactic phenomena appropriate for
child learners.



2 Related Work

We are aware that many query languages have been created over the years, in which the researcher can
create a pattern to extract one or multiple words with specific syntactic, morphological, orthographic
etc. features from text. However, most of them do not support queries from dependency parses, but
require annotated text with parts-of-speech, and only a few such as ANNIS (Zeldes et al., 2009) allow
for patterns to look for relationships between two nodes of a syntactic tree. Other languages require the
position of extra words given explicitly relative to the first word (COSMAS II; (Bodmer, 1996)), or rely
on neighbouring words without capturing any dependencies (Poliqarp; (Przepiórkowski et al., 2004)).
In addition, these query languages require a certain level of expertise with regular expressions and the
syntax of the language; efforts have been made to simplify the syntax of these languages, for example
Coral (Kuhn and Höfler, 2012) is a controlled natural language that translates natural language queries
to the ANNIS syntax.

Query languages tailored for use with dependency parses also have existed for a while; for example
PML-TQ (Pajas and Štěpánek, 2009) contains a very robust query language which is able to search for
one, two or multiple constituents of a syntactic tree, either terminal non-terminal nodes. It is versatile and
dynamic, and it would allow us to define patterns between words and phrases to cover the simplest rules
(e.g. the presence of predicate) to more complex (e.g. constituents of a question clause), but its syntax is
very complex for us to use throughout our project. TüNDRA (Martens, 2012) is another query language
which also supports queries of one or multiple words based on annotation, deep or surface structure,
negation, etc. and uses a similar syntax and the TIGERSearch annotation schema (Lezius, 2002). For
our intents and purposes, it would be a fairly complete approach for our task of querying grammatical
rules; however, we still wanted to attempt an approach that would be inspired by the successes of the
predecessors and offer even better readability and adherence to the theory of dependency parsing, instead
of also offering a search for serialized words, syntactically meaningless strings etc.

To create the queries for the grammatical rules, as explained in Section 1, we avoided the use of an
automatic method to extract syntactic patterns automatically from text. Pattern induction would not be
accurate and informative enough to create patterns for the specific grammatic rules that we have declared.
For example, a statistical extraction (Ammar, 2016) that created pairs of a dependent and head word from
dependency parses of English sentences would probably not be sufficient in capturing all the constituents
of a grammatical rule, and in any case would require human annotation to the corresponding grammatical
rule and its difficulty and frequency. A statistic approach close to our needs involves extracting syntactic
patterns based on syntax trees from a large English corpus and scoring their difficulty based on a Zipfian
distribution (Kauchak et al., 2017). However, as they discuss in their paper and in previous research
(Kauchak et al., 2012), frequency is a solid but not determining factor to the difficulty of a pattern, and
surface syntactic structure is not sufficient to describe a grammatical phenomenon.

3 Query Language

Our goal is to create syntactic patterns that reflect grammatical phenomena, as taught in primary school
education, in a formal language that could be machine-readable, by using the dependencies of words in a
sentence, and also adequately user-friendly. Our syntax should be able to map the dependencies among
two or more words, use syntactic features (parts-of-speech, dependency labels), morphosyntactic features
(lemma, case, number etc.) and orthographic features (one-on-one match with a word, punctuation etc.),
and also be position-independent, so that it can find dependencies that span across the sentence.

Our approach is based on the theory of abstract role values of constraint-based dependency grammars
(White, 2000). These grammars possess a set of lexical categories of the elements of a phrase, a set of
their roles, a set of their labels, and these sets are governed by a set of constraints (Nivre, 2005). In
our approach, we create sets of possible syntactic features for each word of the phrase separately (set
of part-of-speech tags, set of dependency labels, set of morphosyntactic information) that should match
the features of a word in a dependency parse. Then, we pair these sets with the sets of features that the
word’s head should possess (if a head-dependent connection is needed in the parser), and add more sets
of features or tuples of dependent-head features if needed by the pattern. By head, we are referring to the



head of a two-word phrase, not to the root of the sentence; this will allow us to build patterns referring
to one-word rules or rules with words that are not directly dependent on the root.

We developed an extendable structure to cater to simple and complex structures. The first word that
needs to be matched in a pattern is called comp_word, after the term complement in a head-driven phrase
structure. This may have a set of possible parts-of-speech, labels, morphosyntactic features, lemmata,
word forms, and morphemes. The second word is the head_word, the head of the first word as defined
by the dependency parse. This one also has its own set of possible features, and the pattern will only be
valid if both words are matched. A pattern template is presented in Figure 1.

comp_word: POS={A,B}&label={c}&
feature={d,e}&lemma={‘e’}&
wordform={‘f’,‘g’}&
wordform={h-,i-}&
wordform={-j-},

head_word: POS={K}&label={l,m}&
feature={o}&wordform={-p,-q},

tokenID(head_word) = headID(comp_word)

Figure 1: Template for a pattern with a head-dependent relation.

Every field may have one or more possible values. The fields POS, label, lemma, and wordform
will be matched with one of the corresponding features of the word. The field feature requires all listed
morphosyntactic features of the pattern to match the morphology of the word. Not all possible sets need
to be filled, as shown in the head_word features; the pattern can include as much relevant information
as needed in each grammatical phenomenon. Values should be separated by a comma in every set, and
brackets should be used when a word is used, e.g. in lemma and wordform. Concerning wordform, this
field can contain either a specific word (preferably inflected), one or multiple prefixes, one or multiple
suffixes, or one or multiple infixes. Different types of values should exist in their own wordform field,
as demonstrated in comp_word.

In order to understand better how patterns are created and match words, we will examine a pattern to
find a simple noun phrase with a definite article, in Figure 2.

comp_word: POS={DET}&label={det}&
feature={Definite=Def,PronType=Art},

head_word: POS={NOUN},
tokenID(head_word) = headID(comp_word)

Figure 2: Pattern to identify a noun phrase with a definite article.

In order for this pattern to exist in a sentence or phrase, we need to have a word that is a determiner
as part-of-speech, labeled as determiner by the dependency parser, have the features of definiteness and
being an article, and be dependent to a word that is a noun. For example, this pattern would be found
in the German sentence, Die Katze schläft. “The cat sleeps.". According to the dependency tree of the
sentence in Figure 3 and the parse in Figure 1, there is a word matching the dependent (Die) and its head
(Katze) matches the head_word of the pattern. Therefore, the pattern, and the rule for noun phrase, will
be found.

This structure can also support simpler grammatical rules that only require matching one element of
the sentence. All the fields that were used above can also be applied here. The word to be matched is
tagged as head_word, as there is no dependency to create a head-complement set, e.g. a one-word pattern
grammatical rule that looks for the presence of a definite article (regardless of its dependencies) shown in
Figure 4. This pattern would be found in the previous example sentence, because the word Die matches
all these requirements.

In order to describe more composite grammatical structures, we can use multiple syntactic patters of
one or two words, combined. All separate patterns should be matched with the words in the sentence, in
order of this compound syntactic pattern to be matched. Since in dependency parsing there is always a
pair of head-complement no longer than two words, in order to describe phenomena that involve more



Die Katze schläft .

root

det
nsubj

punct

Figure 3: Dependency tree of the
sentence Die Katze schläft.

Die Katze schläft .
“der" “Katze" “schlafen" .
POS=DET POS=NOUN POS=VERB POS=PUNCT
label=det label=nsubj label=root label=punct
Case=Nom Case=Nom Number=Sing
Definite=Def Gender=Fem Person=3
Gender=Fem Number=Sing VerbForm=Fin
Number=Sing
PronType=Art
head=“Katze" head=“schläft" head=“schläft"

Table 1: A CDG parse of the sentence Die Katze schläft.

head_word: POS={DET}&label={det}&
feature={Definite=Def,PronType=Art}

Figure 4: Pattern to identify a definite determiner.

than two words, first we make patterns of one or two words and connect these patterns by finding their
common denominator. This has to be a unique word in the utterance on which all the other words
are dependent– the root. For example, in order to create a pattern for a simple sentence with a mono-
transitive verb, e.g. Er liebt Maria. “He loves Maria.", our course of action would be to create a pattern
that matches a nominal subject with a verb which is the root of the sentence, and a second pattern which
matches a direct object with a verb that is also the root of the sentence. In a sentence, only one root
should exist. Therefore, both patterns have the same head_word.

As shown in Figure 6 and Table 2, the compound pattern in Figure 5 will match the sentence ‘Er liebt
Maria’, because both patterns in the compound pattern are matched.

comp_word: label={nsubj},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word)

AND
comp_word: label={obj},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word)

Figure 5: Pattern for a simple mono-transitive sentence.

Er liebt Maria .

root

nsubj obj

punct

Figure 6: Dependency tree of sen-
tence Er liebt Maria.

Er liebt Maria .
“er" “lieben" “Maria" .
POS=PRON POS=VERB POS=PROPN POS=PUNCT
label=nsubj label=root label=obj label=punct
Case=Nom Number=Sing
Gender=Masc Person=3
Number=Sing VerbFrom=Fin
Person=3
head=“liebt" head=“liebt" head=“liebt"

Table 2: CDG parse of the sentence Er liebt Maria.

Our previous pattern only used dependency labels and part-of-speech tags for a good reason; in the
grammar rule we defined, we are looking for sentences with a nominal subject and a direct object, re-
gardless of their part-of-speech (pronoun, a noun, a proper noun etc.) and their morphosyntactic features.
However, this under-defining could prove problematic. Suppose we have a reflexive sentence, e.g. Ich
wasche mich. “I wash myself." (Figure 8 and Table 3). This is a reflexive sentence, because the object of
the sentence has the same reference as the subject. Reflexivity is a more complex syntactic structure than
a simple sentence with two different entities as subject and object, and we would like to create a special
pattern for reflexive sentences. See a pattern for such cases of simple reflexive sentences in Figure 7.



comp_word: label={nsubj},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word)

AND
comp_word: label={obj,iobj}& feature={PronType=Prs,

Reflex=Yes},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word)

Figure 7: Pattern for a simple reflexive sentence.

Ich wasche mich .

root
nsubj obj

punct

Figure 8: Dependency tree of sen-
tence Ich wasche mich.

Ich wasche mich .
“ich" “waschen" “ich" .
POS=PRON POS=VERB POS=PRON POS=PUNCT
label=nsubj label=root label=obj label=punct
Case=Nom Number=Sing Case=Acc
Gender=Masc Person=3 Gender=Masc
Number=Sing VerbFrom=Fin Number=Sing
Person=1 Person=1
PronType=Prs PronType=Prs

Reflex=Yes
head=“wasche" head=“wasche" head=“wasche"

Table 3: CDG parse of the sentence Ich wasche mich.

The sentence Ich wasche mich. would match the reflexive sentence pattern, but it would also match the
aforementioned pattern for simple mono-transitive sentences, because in dependency parsing, reflexive
pronouns are dependent on the head of the clause and not on the entity they reference. While this reflexive
sentence is a mono-transitive sentence and the mono-transitive sentence pattern correctly matches it, we
would like to keep these two structures separate from each other because of their different difficulties.
We could add a constraint to the pattern for reflexive sentences that would state that if both the pattern for
mono-transitive sentences and reflexive sentences is matched, then the most ‘relevant’ one is reflexive
sentences. However, this approach would be difficult as our set of grammar rule patterns grows and we
would have to keep track of all pre-existing possible matching patterns. Our second option would be to
revise the way we define simple patterns and add exclude operators that would prevent more complex
cases to be matched with simpler patterns. An exclude operator (tilde and parentheses) is wrapped around
a pattern or a simple pattern and can be used in one or more patterns in a compound pattern. If the pattern
inside the exclude operator is found, then the pattern is deemed to not be a match. For example, we would
revise our simple mono-transitive sentences pattern to exclude the presence of an indirect object (hence,
not matching bi-transitive sentences and the presence of reflexivity) in Figure 9.

comp_word: label={nsubj},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word)

AND
comp_word: label={obj},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word)

AND
∼(comp_word: label={iobj},

head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word))

AND
∼(comp_word: label={obj,iobj}& feature=

{PronType=Prs,Reflex=Yes},
head_word: POS={VERB}&label={root},
tokenID(head_word) = headID(comp_word))

Figure 9: The revised pattern for simple mono-transitive sentences.



While this approach may seem more arduous, since we would have to take into account multiple cases
when making a pattern, it enables the definition of very specific patterns that cater to specific grammatical
phenomena, like this case of reflexive sentences. It can also help us define differences between patterns
that cannot be taken account by using only dependencies. For example, a simple yes-no question in
German, e.g. Hast du Zeit? “Do you have time?" (Figure 10) would have the same dependency structure
as the sentence Du hast Zeit. “You have time." (Figure 11). Therefore, it is not possible to discern
between these two cases with a pattern, unless we use an exclude operator that excludes the presence
of a specific punctuation mark. The reason we are not using the positions of words in a sentence in
our patterns for this case or any other pattern so far is because dependencies are meant to capture deep
structural relationships, regardless of position. Declaring strict positions for arguments in a pattern could
be problematic for languages that allow even small liberties in word order such as German. Das Buch
lese ich! and Ich lese das Buch! both translate to “I read the book!" despite the surface structures being
OVS and SVO, respectively. Ultimately, the choices on how patterns will match grammatical rules and
sentences belong to the creators of the patterns for each language.

Hast du Zeit ?

root

nsubj

obj

punct

Figure 10: Dependency tree of Hast du Zeit?

Du hast Zeit .

root
nsubj obj

punct

Figure 11: Dependency tree of Du hast Zeit.

Das Buch lese ich !

root

nsubjobj
punct

det

Figure 12: Dependency tree of Das Buch lese ich!

Ich lese das Buch !

root

nsubj

obj

punct

det

Figure 13: Dependency tree of Ich lese das
Buch!

4 The matching process

4.1 Building syntactic patterns for German

Now that we have defined our query language, we will present the process of collecting the appropriate
grammar rules and creating the patterns to find these rules in a sentence-level. Since our target demo-
graphic was primary school children, we had to focus on simpler grammar rules and syntactic structures,
and pay close attention to what difficulty level we will assign to them, so that students would be in-
troduced to concepts with a gradual difficulty and based on already acquired rules. It is important to
understand which syntactic phenomena are used at each age. While Kauchak et al. (2007) have men-
tioned that the frequency of a parse tree structure correlates to its difficulty, there are more factors to
how difficult a grammar rule is, e.g. young German students are not introduced to complex cases such as
passive voice in German until 10/11 years old (Klasse 5/6). (Note that Germany does not have a unified
school curriculum and syllabus, and every state defines their own standards; we consulted the school
curricula of the German states of Saarland and Rheinland-Pfalz to understand which syntactic phenom-
ena are used at each age.) To further study the syntactic phenomena, we consulted linguistics textbooks
(Altmann and Hahnemann, 2007).

As was discussed in Section 3, we built the patterns following grammar rules as close as possible,
excluding cases where the pattern would be too general. We used the Universal Dependencies 2.3 anno-
tation schema for our patterns (Nivre et al., 2018a). So far, we have created 135 patterns for morphosyn-
tactic and syntactic rules in German with their syntactic categories, a human-readable description, a
difficulty score, and their prerequisite rules (a list of what rules need to be already known in order for



this rule to be taught. It is used by our partners in the project to automatically curate content according
to the user’s level.). We present an abridged version of a few of syntactic rules, their difficulty, and the
patterns we have created to match them; Table 4 with simple rules, Table 5 with complex rules and Table
6 with compound rules.

ID Description Dif. Pattern
218 Auxiliary verb “sein", present

indicative
1 head_word: POS={AUX}&wordform={“bin",“bist",“ist",“sind",“seid",“sein"}&feature={VerbForm=Fin}

222 Auxiliary verb “haben",
present indicative

1 head_word: POS={AUX}&wordform={“hab",“habe",“hast",“hat",“haben"}&feature={Mood=Ind,VerbForm=Fin}

Table 4: A few simple syntactic patterns to match one word. ‘Dif’ is the assigned difficulty.

ID Description Dif. Pattern
240 Composed forms: Perfect in-

dicative
1 comp_word: {<222>,<218>}, head_word: POS={VERB}&feature={VerbForm=Part}, tokenID(head_word)=headID(comp_word)

261 Adjective is Predicate to
Noun

1 comp_word: POS={NOUN,PROPN,PRON}, head_word: POS={ADJ}&label={root}, tokenID(head_word)=headID(comp_word)

281 Two-part Coordinate con-
junctions

2 comp_word: POS={CCONJ}&label={cc}, head_word: POS={CCONJ}&label={cc}, tokenID(head_word)=headID(comp_word)

287 Prepositions with accusative 2 comp_word: POS={ADP}&label={case}, head_word: POS={NOUN,PROPN}&feature={Case=Acc}, tokenID(head_word)=headID(comp_word)

Table 5: A few complex syntactic patterns for one dependent word (261) or a dependent word and its
head (240, 281, 287). Note that the complement side of rule 240 is the simple rules 222 or 218 from
Table 4.

ID Description Dif. Pattern
288 Simple clause with intransi-

tive verb
1 (comp_word: label={nsubj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word: la-

bel={obj}) AND ∼(head_word: label={iobj}) AND ∼(head_word:POS={VERB}&label={root}&feature={VerbForm=Part}) AND ∼(head_word:
POS={PUNCT}&wordform={“?"}) AND ∼(head_word: feature={Mood=Imp}&label={root})

289 Simple clause with intransi-
tive verb, with auxiliary verb

1 (comp_word: label={nsubj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND (comp_word:
POS={AUX}&label={aux}, head_word: POS={VERB}&label={root}&feature={VerbForm=Part}, tokenID(head_word)=headID(comp_word))
AND ∼(head_word: label={obj}) AND ∼(head_word: label={iobj}) AND ∼(head_word: POS={PUNCT}&wordform={“?"}) AND ∼(head_word:
feature={Mood=Imp}&label={root})

290 Simple clause with transitive
verb

1 (comp_word: label={nsubj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND (comp_word:
label={obj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word: label={iobj})
AND ∼(head_word:POS={VERB}&label={root}&feature={VerbForm=Part}) AND ∼(head_word: POS={PUNCT}&wordform={“?"}) AND
∼(head_word: label={obj,iobj}&feature={Reflex=Yes}) AND ∼(head_word: feature={Mood=Imp}&label={root})

292 Simple clause with bitransi-
tive verb

2 (comp_word: label={nsubj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND
(comp_word: label={obj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND (comp_word:
label={iobj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word:
POS={VERB}&label={root}&feature={VerbForm=Part}) AND ∼(head_word: POS={obj,iobj}&feature={Reflex=Yes}) AND ∼(head_word:
POS={PUNCT}&wordform={“?"}) AND ∼(head_word: feature={Mood=Imp}&label={root})

294 Reflexive sentence with tran-
sitive verb

1 (comp_word: label={nsubj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND (comp_word:
label={obj,iobj}&feature={Reflex=Yes}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND
∼(head_word:POS={VERB}&label={root}&feature={VerbForm=Part}) AND ∼(head_word: POS={PUNCT}&wordform={“?"}) AND
∼(head_word: feature={Mood=Imp}&label={root})

296 Simple clause with predicate 1 (comp_word: label={nsubj}, head_word: POS={ADJ}&label={root}, tokenID(head_word)=headID(comp_word)) AND (comp_word:
POS={VERB,AUX}&label={cop}, head_word: POS={ADJ}&label={root}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word:
POS={PUNCT}&wordform={“?"}) AND ∼(head_word: feature={Mood=Imp}&label={root})

298 Simple clause with separable
verb

2 (comp_word: POS={ADP}&label={compound:prt}, head_word: POS={VERB}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word:
POS={PUNCT}&wordform={“?"}) AND ∼(head_word: feature={Mood=Imp}&label={root})

299 Simple w- question (yes-no) 1 (comp_word: label={nsubj}, head_word: POS={VERB}&label={root}, tokenID(head_word)=headID(comp_word)) AND (comp_word:
POS={PUNCT}&wordform={“?"}, head_word: label={root}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word: fea-
ture={PronType=Int}) AND ∼(head_word: POS={VERB}&label={root}&feature={VerbForm=Part}) AND ∼(head_word: fea-
ture={Mood=Imp}&label={root})

301 Simple w- question where ad-
verb/pronoun is Subject

1 (comp_word: POS={PRON}&label={nsubj}&feature={Case=Nom,PronType=Int}, head_word: POS={VERB}&label={root}, to-
kenID(head_word)=headID(comp_word)) AND (comp_word: POS={PUNCT}&wordform={“?"}, head_word: label={root}, to-
kenID(head_word)=headID(comp_word)) AND ∼(head_word: feature={Mood=Imp}&label={root})

302 Simple question, adverb or
pronoun is Complementizer

3 (comp_word: label={advmod}&feature={PronType=Int}, head_word: label={root}, tokenID(head_word)=headID(comp_word)) AND
(comp_word: POS={PUNCT}&wordform={“?"}, head_word: label={root}, tokenID(head_word)=headID(comp_word)) AND ∼(head_word:
feature={Mood=Imp}&label={root})

Table 6: A few of the compound patterns that will match an entire (simple) clause.

4.2 Dictionaries and the case of multi-word expressions
The patterns need to be matched with a parsed sentence. We use the MUNDERLINE parser of (Volokh
and Neumann, 2012) for dependency parsing in CoNLL-U trees with Universal Dependencies annota-
tion tags. However, we require some further linguistic information for some patterns, which cannot be
provided from a parser, e.g. morphemes. As part of the German language resources, we have created
a dictionary of 15,000 German words, from our 117K corpus of age-appropriate texts: children’s texts
from children’s magazines and newspapers (GEOlino1, GEOlino Extra2, Dein SPIEGEL3), children’s

1https://www.geo.de/geolino
2https://www.geo.de/magazine/geolino-extra
3https://www.deinspiegel.de/



literature (Phontasia4) and pedagogical material (works of Ursula Rickli5). These words are annotated
with lemma and stem information, their phonological and morphological features, their morphemes and
orthographic syllables. Our dictionary is relatively small, because children’s texts tend to be simple, but
it should cover the most important words for sentences relevant to German primary school students.

Concerning multi-word expressions (MWEs), there are still open discussions on how they should be
handled (Gerdes and Kahane, 2016). Even so, parsers are usually unable to identify them. For example,
while ‘as well as’ is considered a fixed MWE, parsers tend to fail to capture the dependencies between
the words of the MWE and the MWE’s head. Our approach to identifying multi-word expressions and
making use of them in syntactic patterns was to reduce a multi-word expression post-parse to a single
phrase retaining the features of only one word of the MWE (Kato et al., 2016). It was only marginally
worse than training a parser with MWE awareness (Candito and Constant, 2014). For example, in the
sentence “We like John as well as Mary.", the MWE as well as is a coordinate conjunction between John
and Mary (Figure 14 and Table 7). The first as has the features of the coordinate conjunction, and well
and as are the subsequent words dependent to as. We concatenate the MWE as one word, as well as, into
one word, retaining only the features of the first as, since it is the head of the MWE.

We like John as well as Mary .

root

nsubj obj

punct

conj

cc

fixed

fixed

Figure 14: Dependency tree of sentence “We like
John as well as Mary."

John as well as Mary
“John" “as" “well" “as" “Mary"
POS=PROPN POS=ADV POS=ADV POS=ADP POS=PROPN
label=obj label=cc label=fixed label=fixed label=conj

Degree=Pos
head=‘like’ head=‘Mary’ head=‘as’ head=‘as’ head=‘John’

Table 7: Part of the CDG parse for the sentence
“We like John as well as Mary.". Note that the
parsers we tested were not able to successfully
annotate ‘well’ and ‘as’ with ‘fixed’– this is a
gold parse.

In order to recognize MWEs and which one of their components is syntactically important (whose
features we are going to annotate the joined MWE with), we compiled a list of the MWEs we deem
relevant for primary school level texts. This allows us to expand if necessary and handle other languages
of the project.

4.3 Matching algorithm

By using our syntactic patterns for German and the required resources (dictionary, list of MWEs), we
now proceed to build an algorithm to match patterns with dependency parses. In Section 3, we presented
three different types of patterns: one-word patterns (Fig. 4), two-word patterns (Fig. 2) and compound
patterns (Fig. 5, 7, 9). In order to match these rules to a parse, we first transform the parse from CoNLL-U
format to a dictionary of dictionaries, where every word of the sentence has its own dictionary of features
(part-of-speech, dependency label, head, morphosyntactic features). We also read the patterns we have
made to a dictionary. Our goal is to check how many patterns matched our sentence’s words, which
patterns matched, and what their dependencies are (if applicable). We have created three algorithms
which step-by-step look up every word in the sentence and try to match it (and its head, if applicable)
to patterns. First, it tries to match the word’s features with features of simple rules (one-word patterns).
Then, it tries to match the word with the complement side of a complex rule. If the complement side is
a match, it finds the head of the word (if applicable) and tries to match the head word’s features with the
head word’s features in the complex rule. Finally, for rules composed of multiple patterns (compound
rules), it tries to match every pattern of the rule, simple or complex, by nesting the algorithms described
above.

4http://www.phontasia.de/
5http://www.ursularickli.ch/



5 Results and Discussion

From our corpus mentioned in Section 4.2, we created two sets: a development set of 152 sentences,
which we used during the process of creating the syntactic patterns to fine-tune them, and a test set
of 101 sentences to test the performance of our patterns and matching algorithm. We created their
dependency parses manually, as a gold standard, and annotated them with the ideal grammar rules that
they should be matched with. First of all, we would like to present a few sentences from the test set
with the annotated matches and the matches that the algorithm returned with the use of gold standard
parses, in Table 8. Some of the patterns for the rules can be found in Tables 4, 5 and 6. The matcher
also returns the position of the head_word and the comp_word if applicable. As shown, the matches are
mostly correct for all three types of patterns, meaning that our query language and our patterns are robust
enough to describe and find the syntactic phenomena that we aimed to identify.

Sentence Gold standard rule Matched rule
205 Function words – Definite article 205
269 Discourse anaphors – NP with definite article 269

Die Reise hat mehrere Tage gedauert. 222 Function words – Auxiliary verb “haben", present indicative 222
“The journey took several days." 217 Function words – Indefinite pronouns 217

240 Morphosyntax – Composed forms: Perfect indicative 240
289 Clause structure – Simple clause, intransitive verb, with auxiliary verb 289
208 Function words – Possessive pronoun, Nominative 208
273 Discourse anaphors – NP with possessive pronoun 273

Ihre Mutter hat eine gute Idee. 206 Function words – Indefinite article 206
“Your mother has a good idea." 270 Discourse anaphors – NP with indefinite article 270

260 Adjectives – Attribute to noun 260
290 Clause structure – Simple clause, transitive verb 290
307 Adverbs 307
230 Function words – Auxiliary verbs, past 230
274 Binding – Reflexive pronouns 274

Jetzt konnte sich die Raupe am Ästchen festhalten. 205 Function words – Definite article 205
“Now the caterpillar could hold on to the branch." 269 Discourse anaphors – NP with definite article 269

294 Clause structure – Reflexive sentence, transitive verb 294
233 Function words – Prepositions with dative
286 Discourse anaphors – Prepositional phrase in dative
212 Function words – Personal pronouns, nominative 212
265 Discourse anaphors – Personal pronouns as Subject 265

Du bist aber schick. 238 Function words – Particles 238
“But you are chic." 307 Adverbs 307

261 Adjectives – Predicate 261
296 Clause structure – Simple clause with predicate 296
206 Function words – Indefinite article 206
270 Discourse anaphors – NP with indefinite article 270
235 Function words – Prepositions with accusative and dative 235

Ein Schiff fährt auf dem Meer entlang. 205 Function words – Definite article 205
“A ship sails along the sea." 269 Discourse anaphors – NP with definite article 269

284 Discourse anaphors – Separable prefix 284
286 Discourse anaphors – Prepositional phrase in dative 286
288 Clause structure – Simple clause, intransitive verb 288
298 Clause structure – Simple clause, with separable verb 298
212 Function words – Personal pronouns, nominative 212
265 Discourse anaphors – Personal pronouns as Subject 265
238 Function words – Particles 238

Hattest du denn keine Arbeit? 307 Adverbs 307
“Did you have no work then?" 207 Function words – Negative Indefinite article 207

271 Discourse anaphors – NP with negation 271
299 Clause structure – Simple question (yes-no) 299
283 Negation 283
216 Function words – Interrogative pronouns 216
275 Discourse anaphors – Interrogative pronoun, determiner, numeral or adverb 275

Wer steht da neben deinem Vater? 307 Adverbs 307
“Who stands there next to your father?" 235 Function words – Prepositions with accusative and dative 235

286 Discourse anaphors – Prepositional phrase in dative 286
301 W-clauses – Simple question, adverb or pronoun is Subject 301

Table 8: Seven sentences from our test set, their ideal matches and the matches that the algorithm re-
turned. Rules that were incorrectly matched/not matched are marked in bold.

In addition, we used several dependency parsers to parse the sentences and then evaluated their
CoNLL-U trees to our gold standard. We wanted to ensure that our parser would have adequate per-
formance and wouldn’t cause mismatches that could be avoided with the use of another parser. The
parsers we chose are all either pre-trained or trained on the German GSD Universal Dependencies tree-
bank (McDonald et al., 2013): UDPipe (Straka and Straková, 2017)), jPTDP (Nguyen and Verspoor,
2018) and Turku neural parser pipeline (Kanerva et al., 2018). The results for the development set can



be found in Table 9, and for the test set in 10. Turku was the most successful of the parsers, creating
more accurate CoNLL-U trees with significantly higher recall than MUNDERLINE and UDPipe. jPTDP
performed poorly because it does not output morphosyntactic features (FEATS) in its CoNLL-U trees,
which is an important input to the matcher. However, in our parse tree evaluations, jPTDP recreated
UPOS, HEAD, and DEPREL columns at least as well as –if not better than– Turku. jPTDP can be exe-
cuted on top of CoNLL-U trees with FEATS, but for the purposes of our experiment, we only considered
direct output of our input of a list of sentences for each parser.

Gold Standard MUNDERLINE UDPipe jPTDP Turku
Total 978 978 911 978 911
TP 922 742 638 249 788
FP 26 92 105 98 89
FN 56 236 273 729 123
Precision 0.9726 0.8897 0.8587 0.7176 0.8985
Recall 0.9427 0.7587 0.7003 0.2546 0.8650
F1 0.9574 0.8190 0.7715 0.3758 0.8814

Table 9: Matcher results on the development
set with gold standard parses and parse results
from the parsers.

Gold Standard MUNDERLINE UDPipe jPTDP Turku
Total 776 776 664 776 664
TP 734 601 496 246 587
FP 32 80 89 68 96
FN 42 175 168 530 77
Precision 0.9582 0.8825 0.8479 0.7834 0.8594
Recall 0.9459 0.7745 0.7470 0.3170 0.8840
F1 0.9520 0.8250 0.7942 0.4514 0.8716

Table 10: Matcher results on the test set with
gold standard parses and parse results from the
parsers.

At first glance, it may seem odd that the matcher was not able to match 100% of the rules correspond-
ing to the gold standard. This may be due to our choices on the way we built the patterns; we did not
aim for a complete representation of the German language and all the possible expressions of a grammar
rule because our goal was to successfully match sentences with grammatical phenomena that are taught
in primary school. Therefore, if a sentence has a grammatical rule that is expressed in a way not covered
by our patterns, the pattern will not be matched. For example, the sentence Jetzt konnte sich die Raupe
am Ästchen festhalten. (Table 8) contains the prepositional phrase am Ästchen. Even though there is a
syntactic pattern to match prepositional phrases with the dative case, the pattern is not matched because
it requires a noun as the head of the phrase, and it does not support substitution, which is a more complex
syntactic phenomenon. However, the sentence is annotated with the grammar rule because the rule is
present.

Additionally, the way that dependency parsing expresses some structures may cause some matches to
not occur. For example, in the sentence, Alles war grün und gelb. “Everything was green and yellow.",
only grün will be matched with the rule for predicate (261, 296), because grün is labeled as adjective
which is the root of the sentence, but gelb is correctly labeled as conjunct to grün, because they are
connected with a conjunction. Even though they have the same syntactic role, conjunct parts of speech
cannot be matched to patterns that require a specific label. In the future, we will consider ways to
overcome this problem, for example by adding rules to add enhanced dependencies as described in
(Nivre et al., 2018b).

We also noticed that problems occur in prepositional phrases when the preposition and the determiner
are contracted to one word. Ideally, in German treebanks they are analysed to preposition and determiner,
but parsers overall failed to decompose these contractions. For example, in the sentence Rotkäppchen
musste zum Hause gehen. “Little Red Riding Hood had to go home.’)", zum Hause would be decomposed
to zu dem Hause, and then the rule for prepositional phrases with dative would be found. Since parsers
are not analysing the contraction, the pattern will not be matched. Multi-word tokens like zum caused
differences in parse trees for UDPipe and Turku compared to our gold standard. In those instances, we
excluded them from the results, which is why the total number of features matched for the two parsers is
lower than the other parsers in Tables 9 and 10.

6 Future work

Our future work will be to extend the matcher to other languages. Our partners are working on creating
syntactic patterns for grammar rules on a primary education level for English, Greek and Spanish. We
would like to assess the pattern quality and the matcher performance for other languages as we did for
German. Since our matcher is language-independent and Universal Dependencies includes annotations



that cover the majority of documented languages, we are optimistic that we will have satisfactory results.
Additionally, we would like to integrate the matcher to the text difficulty metric that has been developed
by our other partners, since our patterns correspond to grammar rules with annotated difficulty.

As part of our ongoing research, we would like to further explore how the matcher and the syntactic
patterns could be used in other NLP applications. We would like to solve problems such as conjunctions
and contractions, and eventually graduate to more complex patterns. For example, we would like to
create patterns for analysis of more complex sentences, something that could easily be achieved since
our matcher successfully recognizes simple sentences in a clause (e.g. the matcher will return the rule
for a subordinate clause and for a simple sentence, in the case of a conditional sentence).

Acknowledgements

We would like to thank our reviewers for their valuable insight. This work was partially funded by the
European Union’s Horizon 2020 grant agreement No. 731724 (iREAD).

References
Hans Altmann and Suzan Hahnemann. 2007. Syntax fürs Examen: Studien-und Arbeitsbuch, volume 1. Vanden-

hoeck & Ruprecht.

Waleed Ammar. 2016. Towards a Universal Analyzer of Natural Languages. Ph.D. thesis, Google Research.

Franck Bodmer. 1996. Aspekte der Abfragekomponente von COSMAS II. LDV-INFO, 8:142–155.

Marie Candito and Matthieu Constant. 2014. Strategies for contiguous multiword expression analysis and depen-
dency parsing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 743–753.

Kim Gerdes and Sylvain Kahane. 2016. Dependency annotation choices: Assessing theoretical and practical is-
sues of universal dependencies. In Proceedings of the 10th Linguistic Annotation Workshop held in conjunction
with ACL 2016 (LAW-X 2016), pages 131–140.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli Leino, and Tapio Salakoski. 2018. Turku neural parser pipeline:
An end-to-end system for the conll 2018 shared task. In Proceedings of the CoNLL 2018 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Dependencies, pages 133–142.

Akihiko Kato, Hiroyuki Shindo, and Yuji Matsumoto. 2016. Construction of an English Dependency Corpus
incorporating Compound Function Words. In LREC.

David Kauchak, William Coster, and Gondy Leroy. 2012. A Systematic Grammatical Analysis of Easy and
Difficult Medical Text. In AMIA.

David Kauchak, Gondy Leroy, and Alan Hogue. 2017. Measuring text difficulty using parse-tree frequency.
Journal of the Association for Information Science and Technology, 68(9):2088–2100.

Tobias Kuhn and Stefan Höfler. 2012. Coral: Corpus access in controlled language. Corpora, 7(2):187–206.

Wolfgang Lezius. 2002. TIGERSearch—ein Suchwerkzeug für Baumbanken. In Proceedings der 6. Konferenz
zur Verarbeitung natürlicher Sprache, volume 6, pages 107–114.

Scott Martens. 2012. Tündra: TIGERSearch-style treebank querying as an XQuery-based web service. In Pro-
ceedings of the joint CLARIN-D/DARIAH Workshop’Serviceoriented Architectures (SOAs) for the Humanities:
Solutions and Impacts’, Digital Humanities.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev,
Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, et al. 2013. Universal dependency annotation for mul-
tilingual parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 92–97.

Dat Quoc Nguyen and Karin Verspoor. 2018. An Improved Neural Network Model for Joint POS Tagging and
Dependency Parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 81–91, Brussels, Belgium, October. Association for Computational Linguistics.



Joakim Nivre, Mitchell Abrams, and Željko Agić et al. 2018a. Universal dependencies 2.3. LINDAT/CLARIN
digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna Kanerva, Simonetta Montemagni, Sebastian Schuster, and
Maria Simi. 2018b. Enhancing Universal Dependency Treebanks: A Case Study. In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018), pages 102–107.

Joakim Nivre. 2005. Dependency grammar and dependency parsing. MSI report, 5133(1959):1–32.

Petr Pajas and Jan Štěpánek. 2009. System for querying syntactically annotated corpora. In Proceedings of the
ACL-IJCNLP 2009 Software Demonstrations, pages 33–36. Association for Computational Linguistics.

Adam Przepiórkowski, Zygmunt Krynicki, Lukasz Debowski, Marcin Wolinski, Daniel Janus, and Piotr Banski.
2004. A Search Tool for Corpora with Positional Tagsets and Ambiguities. In LREC.

Milan Straka and Jana Straková. 2017. Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0 with UDPipe.
In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependen-
cies, pages 88–99, Vancouver, Canada, August. Association for Computational Linguistics.

Alexander Volokh and Günter Neumann. 2012. Transition-based Dependency Parsing with Efficient Feature
Extraction. In 35th German Conference on Artificial Intelligence (KI-2012), Saarbrücken, Germany, September.

Christopher M White. 2000. Rapid grammar development and parsing: Constraint dependency grammars with
abstract role values. West Lafayette, Indiana, USA: PhD Thesis, Purdue University.

Amir Zeldes, Anke Lüdeling, Julia Ritz, and Christian Chiarcos. 2009. ANNIS: A search tool for multi-layer
annotated corpora.


