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Abstract 

This paper proposes an efficient example selection method for example-based word sense 
disambiguation systems. To construct a practical size database, a considerable overhead 
for manual sense disambiguation is required. Our method is characterized by the reliance 
on the notion of the training utility: the degree to which each example is informative for 
future example selection when used for the training of the system. The system progressively 
collects examples by selecting those with greatest utility. The paper reports the effectivity 
of our method through experiments on about one thousand sentences. Compared to ex- 
periments with random example selection, our method reduced the overhead without the 
degeneration of the performance of the system. 

1 I n t r o d u c t i o n  

Word sense disambiguation is a crucial task in many NLP applications, such as machine trans- 
lation [1], parsing [14, 16] and text retrieval [10, 23]. Given the growing utilization of machine 
readable texts, word sense disambiguation techniques have been variously used in corpus-based 
approaches [1, 3, 5, 12, 18, 20, 21, 24]. Unlike rule-based approaches, corpus-based approaches 
release us from the task of generalizing observed phenomena in order to disambiguate word 
senses. Our system is based on such an approach, or more precisely it is based on an example- 
based approach [5]. Since this approach requires a certain number of examples of disambiguated 
verbs, we have to carry out this task manually, that is, we disambiguate verbs appearing in 
a corpus prior to their use by the system. A preliminary experiment on ten Japanese verbs 
showed that the system needed on average about one hundred examples for each verb in order 
to achieve 82% of accuracy in disambiguating verb senses. In order to build an operational 
system, the following problems have to be taken into account: 

1. Since there are about one thousand basic verbs in Japanese, a considerable overhead is 
associated with manual word sense disambiguation. 

2. Given human resource limitations, it is not reasonable to manually analyze large corpora 
as they can provide virtually infinite input. 

3. Given the fact that example-based natural language systems, including our system, search 
the example-database (database, hereafter) for the most similar examples with regard to 
the input, the computational cost becomes prohibitive if one works with a very large 
database size [11]. 
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All these problems suggest a different approach, namely to select a small number of optimally 
informative examples from a given corpora. Hereafter we will call these examples "samples." 

Our method, based on the utility maximization principle, decides on which examples should 
be included in the database. This decision procedure is usually called selective sampling. 
Selective sampling directly addresses the first two problems mentioned above. The overall 
control flow of systems based on selective sampling can be depicted as in figure 1, where 
"system" refers to dedicated NLP applications. The sampling process basically cycles between 
the execution and the training phases. During the execution phase, the system generates 
an interpretation for each example, in terms of parts-of-speech, text categories or word senses. 
During the training phase, the system selects samples for training from the previously produced 
outputs. During this phase, a human expert provides the correct interpretation of the samples 
so that the system can then be trained for the execution of the remaining data. Several 
researchers have proposed such an approach. 

. . .  . . . . . .  training phase .. 

I • 
correct interpretation 

, [ human  I ", 

. . I .  . . . . . . .  . . . . . . . . . .  /~ '1  i j  I 
y . . . . . . .  ~ I [ . . . . . . . . .  , 

. ~ - - - - - - - ' r ' - . - . . .  , , I ( f _ - l - . . ~ . . . . . ~  . .  

"""- . .  . . . . .  outputs.] . . . .  . .- '"" 
. . . . . . . . .  execution phase . . . . . . . . . . .  

Figure 1: Flow of control of the example sampling system 

Lewis et al. proposed an example sampling method for statistics-based text classification [13]. 
In this method, the system always selects samples which are not certain with respect to the 
correctness of the answer. Dagan et al. proposed a committee-based sampling method, which is 
currently applied to HMM training for part-of-speech tagging [2]. This method selects samples 
based on the training utility factor of the examples, i.e. the informativity of the data with 
respect to future training. However, as all these methods are implemented for statistics-based 
models, there is a need to explore how to formalize and map these concepts into the example- 
based approach. 

With respect to problem 3, a possible solution would be the generalization of redundant 
examples [8, 19]. However, such an approach implies a significant overhead for the manual 
training of each example prior to the generalization. This shortcoming is precisely what our 
approach allows to avoid: reducing both the overhead as well as the size of the database. 

Section 2 briefly describes our method for a verb sense disambiguation system. The next 
Section 3 elaborates on the example sampling method, while section 4 reports on the results of 
our experiment. Before concluding in section 6, discussion is added in section 5. 
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2 Example-based verb sense disambiguation sys tem 

suri (pickpocket) } 
kanojo (she) 
ani (brother) 

ga 

kane (money) I 
saifu (wallet) 
otoko (man) o 
uma (horse) 
alden (idea) 
menkyoshd (license) 
shikaku (qualification) 
biza (visa) 

toru (to take/steal) 

karc (he) I- '1 
kanojo (she) } ga 
gakusei ( s tudent )~  

chichi (father) ~ ga shinbun (newspaper) 
kyaku (client) J_ zasshi (journal) o toru (to subscribe) 

dantai (group) 
ryokdkyaku (passenger) ga heya (room) o 
joshu (assistant) hikdki (airplane) 

o toru (to attain) 

toru (to reserve) 

: : : 

Figure 2: A fragment of a database, and the entry associated with the Japanese verb toru 

Our method for disambiguating verb senses uses a database containing examples of colloca- 
tions for each verb sense and its associated case frame(s). Figure 2 shows a fragment of the 
entry associated with the Japanese verb toru. As with most words, the verb toru has multiple 
senses, a sample of which are "to take/steal," "to attain," "to subscribe" and "to reserve." 
The database specifies the case frame(s) associated with each verb sense. In Japanese, a com- 
plement of a verb consists of a noun phrase (case filler) and its case marker suffix, for example 
ga (nominative) or o (accusative). The database lists several case filler examples for each case. 
The task of the system is "to interpret" the verbs occurring in the input text, i.e. to choose 
one sense from among a set of candidates. All verb senses we use are defined in "IPAL" [7], 
a machine readable dictionary. IPAL also contains example case fillers as shown in figure 2. 
Given an input, in our case a simple sentence, the system identifies the verb sense on the basis 
of the scored similarity between the input and the examples given for each verb sense. Let us 
take as an example the sentence below: 

hisho ga shindaisha o toru. 
(secretary-NOM) (sleeping car-ACC) (?) 

In this example, one may consider hisho ("secretary") and shindaisha ("sleeping car") to be 
semantically similar to joshu ("assistant") and hikSki ("airplane") respectively, and since both 
collocate with the "to reserve" sense of toru one could infer that toru may be interpreted as 
"to reserve." The similarity between two different case fillers is estimated according to the 
length of the path between them in a thesaurus. Our current experiments are based around 
the Japanese word thesaurus Bunruigoihyo [17]. Figure 3 shows a fragment of Bunruigoihyo 
including some of the nouns in both figure 2 and the example sentence above, with each word 
corresponding to a leaf in the structure of the thesaurus. As with most thesauri, the length of 
the path between two terms in Bunruigoihyo is expected to reflect their relative similarity. In 
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table 1, we show our measure of similarity, based on the length of the path between two terms, 
as proposed by Kurohashi et al [12]. 

I I 
kare kanojo 

I 

I 

I I 

I 
otoko joshu hisho shinbun zasshi kane heya kippu uma 

Figure 3: A fragment of Bunruigoihyo 

Furthermore,  since the restrictions imposed by the case fillers in choosing the verb sense are 
not equally selective, we consider a weighted case contribution to the disambiguation (CCD) of 
the verb senses. This CCD factor is taken into account when computing the score of a verb's 
sense. Consider again the case of toru in figure 2. Since the semantic range of nouns collocating 
with the verb in the nominative does not seem to have a strong delinearization in a semantic 
sense (in figure 2, the nominative of each verb sense displays the same general concept, i.e. 
animate),  it would be difficult, or even risky, to properly interpret the verb sense based on 
the similarity in the nominative. In contrast, since the ranges are diverse in the accusative, it 
would be feasible to rely more strongly on the similarity here. This argument can be illustrated 
as in figure 4, in which the symbols "1" and "2" denote example case fillers of different case 
frames, and an input sentence includes two case fillers denoted by "x" and "y." 

nominat ire 

© 
accusative 

Figure 4: The semantic ranges of the nominative and accusative with verb toru 

The figure shows the distribution of example case fillers for the respective case frames, denoted 
in a semantic space. The semantic similarity between two given case fillers is represented by 
the physical distance between two symbols. In the nominative, since "x" happens to be much 
closer to a "2" than any "1," "x" may be estimated to belong to the range of "2"s, although 
"x" actually belongs to both sets of " l"s  and "2"s. In the accusative, however, "y" would be 
properly estimated to belong to the set of " l"s  due to the mutual  independence of the two 
accusative case filler sets, even though examples did not fully cover each of the ranges of " l"s  
and "2"s. Note that  this difference would be critical if example data  were sparse. We will 
explain the method used to compute CCD later in this section. 
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To illustrate the overall algorithm, we will consider an abstract specification of both input 
and the datatbase (see figure 5). Let the input be {ncl-mcl, nc2-mc2, nc3-mc3, v}, where nei 
denotes the case filler for the case ci, and mci denotes the case marker for ci. The interpretation 
candidates for v are derived from the database as sl, 82 and s3. The database contains also 
a set £8i,cj of case filler examples for each case cj of each sense 8i ( " - -"  indicates that  the 
corresponding case is not allowed). 

Table 1: The relation between the length of the path between two nouns X and Y (fen(X, Y)) 
in Bunruigoihyo and their relative similarity (sire(X, Y)) 

len(X,Y) 0 2 4 6 8 10 12 
s im(X,Y)  11 10 9 8 7 5 0 

input [ ncl-rr 

~81,Cl 
database £s2,cl 

ncl-mel nc2-rnc2 ne3-mc3 v (?) 

es l , e2  Esl ,ca  - -  v ( s l )  
£82,e2 £ S 2 , C 3  £82,e4 v (82) 
£83,e2 £83,c3 - -  v (83) 

Figure 5: An input and the database 

During the verb sense disambiguation process, the system discards first those candidates 
whose case frame does not fit the input. In the case of figure 5, s3 is discarded because the 
case frame of v (8a) does not subcategorize for the case cl. 

In the next step the system computes the score of the remaining candidates and chooses as 
the most plausible interpretation the one with the highest score. The score of an interpretat ion 
is computed by considering the weighted average of the similarity degrees of the input com- 
plements with respect to each of the example case fillers (in the corresponding case) listed in 
the database for the sense under evaluation. Formally, this is expressed by equation (1), where 
S(s) is the score of the sense s of the input verb, and SIM(nc,  gs,c) is the maximum similarity 
degree between the input complement nc and the corresponding complements in the database 
example £s,c (equation (2)). 

S(8) = Ee  SIM(nc,  gs,c) " CCD(c) 
~ c  CCD(c) 

(1) 

SIM(ne,  gs,c) = max sirn(ne, e) (2) 
e~gs,c 

In equation (2), sim stands for the similarity degree between nc and an example case filler e 
as given by table 1. 

CCD(c) expresses the weight factor of the case c contribution to the (current) verb sense 
disambiguation. Intuitively preference should be given to cases displaying case fillers which 
are classified in semantic categories of greater independence. Let v be a verb with n senses 
(81, 82 , . . . ,  8n) and let £si,c be the set of example case fillers for the case c, associated with the 
sense si. Then, c's contribution to v's sense disambiguation, CCD(c), is likely to be higher if 
the example case filler sets {gsi,c I i = 1 , . . . ,  n} share less elements. The notion of sharing is 
defined based on the similarity as in equation (3). 

{ X } U { Y } = { X }  if s im(X,Y)  >=9 (3) 
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With these definitions, CCD(c) is given by equation (4). 

1 ~ ]Csi,c] + ]Csj,c] - 2]Esi,c n Csj,c] 
CCD(c) = ~ 2  ~=1 i=~+1 [Esi,c[ -~ ISsj,cl (4) 

Where a is the constant for parameterizing the extent to which CCD influences verb sense 
disambiguation. The larger a, the stronger CCD's influence on the system's output.  

3 Example sampling algorithm 

3.1 O v e r v i e w  

Let us look again at figure I in section 1. In this diagram, "outputs" refers to a corpus in which 
each sentence is assigned the proper interpretation of the verb during the execution phase. In 
the "training" phase, the system stores samples of manually disambiguated verb senses (simply 
checked or appropriately corrected by a human) in the database to be later used in a new 
execution phase. This is the issue we turn to in this section. 

Lewis et al. proposed the notion of uncertain example sampling for the training of statistics- 
based text classifiers [13]. Their method selects those examples that  the system classifies (in 
this case, matching a text category) with minimum certainty. This method is based on the 
assumption that  there is no need for teaching the system the correct answer when it answered 
with high certainty. However, we should take into account the training effect a given example 
has on other examples. In other words, by selecting an appropriate example as a sample, we 
can get more correct examples in the next cycle of iteration. In consequence, the number of 
examples to be taught will decrease. We consider maximization of this effect by means of a 
training utility function (TUF) aiming at ensuring that the example with the highest training 
utility figure, is the most useful example at a given point in time. 

Let S be a set of sentences, i.e. a given corpus, and T be a subset of S in which each sentence 
has already been manually disambiguated for training. In other words, sentences in T have 
been selected as samples, and are hence stored in the database. Let X be the set of the residue, 
realizing equation (5). 

S = X U T  (5) 

We introduce a utility function TUF(x), which computes the training utility figure for an 
example x. The sampling algorithm gives preference to examples of maximum utility, by way 
of equation (6). 

arg max TUF(x) (6) 
xEX 

We will explain in the following sections how one could estimate TUF, based on the estimation 
of the certainty figure of an interpretation. Ideally the sampling size, i.e. the number of samples 
selected at each iteration would be such as to avoid retraining of similar examples. It should be 
noted that  this can be a critical problem for statistics-based approaches [1, 3, 18, 20, 24], as the 
reconstruction of statistic classifiers is expensive. However, example-based systems [5, 12, 21] 
do not require the reconstruction of the system, but examples have to be stored in the database. 
It also should be noted that in each iteration, the system needs only compute the similarity 
between each example x belonging to X and the newly stored example, instead of every example 
belonging to T, because of the following reasons: 

• storing an example of verb sense interpretation si, will not affect the score of other verb 
senses, 
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• if the system memorizes the current score of si for each x, the system simply needs to 
compare it with the newly computed score between x and the newly stored example in 
T and choose the greater of the two to be the new plausibility of si. 

This reduces the time complexity of each iteration from O(N 2) to O(N),  given that  N is the 
total number of examples in S. 

3.2 I n t e r p r e t a t i o n  c e r t a i n t y  

Lewis et al. estimate certainty of an interpretation by the ratio between the probability of 
the most plausible text category, and the probability of any other text category, excluding 
the most probable one. Similarly, in our example-based verb sense disambiguation system, we 
introduce the notion of interpretation certainty of examples based on the following applicability 
restrictions: 

1. the highest interpretation score is sufficiently large, 

2. the highest interpretation score is significantly larger than the second highest score. 

The rationale for these restrictions is given below. Consider figure 6, where each symbol 
denotes an example in S, with symbols "x" belonging to X and symbols "e" belonging to T. 
The curved lines delimit the semantic vicinities (extents) of the two "e"s, i.e. sense 1 and sense 
2, respectively 1. The semantic similarity between two sentences is graphically portrayed by 
the physical distance between the two symbols representing them. In figure 6-a, "x 's  located 
inside a semantic vicinity are expected to be interpreted with high certainty as being similar 
to the appropriate example "e," a fact which is in line with restriction 1 mentioned above. 
However, in figure 6-b, the degree of certainty for the interpretation of any "x" which is located 
inside the intersection of the two semantic vicinities cannot be great. This happens when the 
case fillers of two or more verb senses are not selective enough to allow a clear cut delineation 
among them. This situation is explicitly rejected by restriction 2. 

X 
X 

sense 1 x 
f X e x  ~ f s e n s e  2 

x , , , , . . _ y  

x X 

X 

X 

X 

sense 1 
x ~ x ~  __~/....~ sense 2 

X 

Figure 6-a: The case where the interpretation 
certainty of the enclosed "x" is great 

Figure 6-b: The case where the interpretation 
certainty of the the enclosed "x" is small 

Figure 6: The concept of interpretation certainty 

Considering the two restrictions, we compute interpretation certainties by using equation (7), 
where C(x) is the interpretation certainty of an example x. Sl(x) and S2(x) are the highest 

1Note that this method can easily be extended for a verb which has more than two senses. In section 4, we 
conducted an experiment using multiply ambiguous verbs. 
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and second highest scores for x, respectively. )~, which ranges from 0 to 1, is a parametric 
constant to control the degree to which each condition affects the computat ion of C(x). 

C ( x )  = s l ( X )  + ( 1  - i x ) .  ( s l ( X )  - (7) 

We estimated the validity of the notion of the interpretation certainty through a preliminary 
experiment, in which we used the same corpus used for another experiment as described in 
section 4. In this experiment, we conducted a six fold-cross validation, that  is, we divided the 
t raining/ test  data  into six equal parts, and conducted six trials in which a different part  was 
used as test data  each time, and the rest as training data. We shall call these two sets the "test 
set" and the "training set." Thereafter,  we evaluated the relation between the applicability 
and the precision of the system. 

In this experiment, the applicability is the ratio between the number of cases where the 
certainty of the system's interpretation of the outputs is above a certain threshold, and the 
number of inputs. The precision is the ratio between the number of correct outputs,  and the 
number of inputs. Increasing the value of the threshold, the precision also increases (at least 
theoretically), while the applicability decreases. Figure 7 shows the result of the experiment 
with several values of ~, in which the optimal ~ value seems to be in the range 0.25 to 0.5. 
It can be seen that,  as we assumed, both restrictions are essential for the estimation of the 
interpretation certainty. 

100 

95 

.~ 90 

85 

' 0 ~ 
0.25i  -+--- 

.............. = .............. , . 0 , 7 5 !  .............. 
............. • X......~"---::-:: f --- i i 1~ - -  .... 
~.~ ......... r - . . " - ,  i i ! 

....... ~-. :: .................. i "'--. "~-k i i i 

i i i i %. %"% i 
! ! i '- ,  " .  
: : : : : ~ ~ ,  . , , ,  . 

80 
60 65 70 75 80 85 90 95 100 

applicability (%) 

Figure 7: The relation between applicability and precision with several A's 

3 .3 T r a i n i n g  u t i l i t y  

The training utility of an example "a" is greater than that  of another example "b" when the 
total interpretation certainty of examples in X increases more after training using the example 
"a" than after using the example "b." Let us consider figure 8, with the basic notation as 
in figure 6, and let us compare the training utility of the examples "a," "b" and "c." Note 
that  in this figure, whatever example we use for training, the interpretation certainty for the 
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neighbours ("x"s) of the chosen example increases. However, it is obvious that we can increase 
the total interpretation certainty of "x"s when we use "a" for training as it has more neighbours 
than either "b" or "c." In consequence, one can expect that the size of the database, which is 
directly proportional to the number of training examples, can be decreased. Let AC(x = s, y) 
be the difference in the interpretation certainty of y E X after training with x E X taken with 
the sense s. TUF(x=s) ,  which is the training utility function for x taken with sense s, can be 
computed by equation (8). 

TUF(x=s)  = ~ AC(x=s ,y )  (8) 

yEN 

We compute TUF(x) by calculating the average of each TUF(x = s), weighted by the probabil- 
ity that x takes sense s. This can be realized by equation (9), where P(x = s) is the probability 
that x is used in training with the sense s. 

TUF(x) = ~ P(x=s)  . TUF(x=s)  (9) 
S 

Given the fact that (a) P(x = s) is difficult to estimate in the current formulation, and (b) the 
cost of computation for each TUF(x = s) is not trivial, we temporarily approximate TUF(x) 
as in equation (10), where K is a set of the k-best verb sense(s) of x with respect to the 
interpretation score in the current state. 

1 . TUF(x = s) (10) T V f ( x )  _~ ~ 
seK 

X 
X 

X 
C 

x b x 
x 

X X x X 

X am 

X X X 
X 

X 

X 

Figure 8: The concept of training utility 

4 E v a l u a t i o n  

We compared the performance of our example sampling method with random sampling, in 
which a certain proportion of a given corpus is randomly selected for training. We compared 
the two sampling methods by evaluating the relation between various numbers of examples 
in training, and the performance of the system on another corpus. We conducted a six fold- 
cross validation as described in section 3.2, but in this experiment, each method selected some 
proportion of the training set as samples. We used the same corpus as described in table 2 as 
training/test data. Both sampling methods used examples from IPAL to initialize the system 
(as seeds) with the number of example case fillers for each case being on average of about 3.7. 

The training/test data used in the experiment contained about one thousand simple Japanese 
sentences collected from news articles. Each of the sentences in the training/test data used 
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in our experiment contained one or several complement(s) followed by one of the ten verbs 
enumerated in table 2. In table 2, the column of "English gloss" describes typical English 
translations of the Japanese verbs. The column of "#  of sentences" denotes the number of 
sentences in the corpus, "#  of senses" denotes the number of verb senses based on IPAL, 
and "lower bound" denotes the precision gained by using a naive method, where the system 
systematically chooses the most frequently appearing interpretation in the training data [6]. 

Table 2: The corpus used for the experiments 

verb II English gloss # of sentences # of senses lower bound 

ataeru give 136 4 66.9 
kakeru  hang 160 29 25.6 

kuwaeru  add 167 5 53.9 
noru ride 126 10 45.2 

osameru  govern 108 8 25.0 
t sukuru  make 126 15 19.8 

torn take 84 29 26.2 
u m u  bear offspring 90 2 81.1 

wakaru understand 60 5 48.3 
y a m e r u  stop 54 2 59.3 

total [ - -  1111 - -  43.7 
I 

We at first estimated the system's performance by its precision, that is the ratio of the 
number of correct outputs, compared to the number of inputs. In this experiment, we set 

= 0.5 in equation (7), and k = 1 in equation (10). The influence of CCD, i.e. o~ in equation 
(4), was extremely large so that the system virtually relied solely on the SIM of the case with 
the greatest CCD. 

Figure 9 shows the relation between the size of the training data and the precision of the 
system. In figure 9, when the x-axis is zero, the system has used only the seeds given by IPAL. 
It should be noted that with the final step, where all examples in the training set have been 
provided to the database, the precision of both methods is equal. Looking at figure 9 one 
can see that the precision of random sampling was surpassed by our training utility sampling 
method. It solves the first two problems mentioned in section 1. One can also see that the size 
of the database can be reduced without degrading the system's precision, and as such it can 
solve the third problem mentioned in section 1. 

We further evaluated the system's performance in the following way. Integrated with other 
NLP systems, the task of our verb sense disambiguation system is not only to output the most 
plausible verb sense, but also the interpretation certainty of its output, so that other systems 
can vary the degree of reliance on our system's output. The following are properties which are 
required for our system: 

• the system should output as many correct answers as possible, 

• the system should output correct answers with great interpretation certainty, 

• the system should output incorrect answers with diminished interpretation certainty. 

Motivated by these properties, we formulated a new performance estimation measure, PM, as 
shown in equation (11). A greater accuracy of performance of the system will lead to a greater 

65 



PM value. 
1 C(x)  (11) PM=N e.  

In equation (11), Cmax is the maximum value of the interpretation certainty, which can be 
derived by substituting the maximum and the mimimum interpretation score for S i ( x )  and 
S2(x),  respectively, in equation (7). Following table 1, we assign 11 and 0 to be the maximum 
and the minimum of the interpretation score, and therefore Cma~ = 11, disregarding the value 
of ~ in equation (7). N is the total number of the inputs and 5 is a coefficient defined as in 
equation (12). 

1 if the interpratation of x is correct 
= (12) 

- p  otherwise 

In equation (12), p is the parametric constant to control the degree of the penalty for a system 
error. For our experiment, we set p = 1, meaning that  PM was in the range - 1  to 1. 

Figure 10 shows the relation between the size of the training data and the value of PM. In 
this experiment, it can be seen that  the performance of random sampling was again surpassed 
by our training utility sampling method, and the size of the database can be reduced without 
degrading the system's performance. 

85 
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0 200 400 600 800 1000 

training data size 

Figure 9: The relation between the training data size and precision of the system 

5 D i s c u s s i o n  

In this section, we will discuss several remaining problems. First, since in equation (8), the 
system calculates the similarity between x and each example in X, computat ion of T U F ( x  = s) 
becomes time consuming. To avoid this problem, a method used in efficient database search 
techniques [9, 22], in which the system can search some neighbour examples of x with optimal 
time complexity, can be potentially used. 
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Figure 10: The relation between the training data size and performance of the system 

Second, there is a problem as to when to stop the training: that  is, as mentioned in section 1, it 
is not reasonable to manually analyze large corpora as they can provide virtually infinite input. 
One plausibile solution would be to select a point when the increment of the total interpretation 
certainty of remaining examples in X is not expected to exceed a certain threshold. 

Finally, we should also take the semantic ambiguity of case fillers (noun) into account. Let us 
consider figure 11, where the basic notation is the same as in figure 6, and one possible problem 
caused by case filler ambiguity is illustrated. Let "xl" and "x2" denote different senses of a 
case filler "x." Following the basis of equation (7), the interpretation certainty of "x" is small 
in both figure l l - a  and l l-b.  However, in the situation as in figure l l -b ,  since (a) the task 
of distinction between the verb senses 1 and 2 is easier, and (b) instances where the sense 
ambiguity of case fillers corresponds to distinct verb senses will be rare, training using either 
"xl" or "x2" will be less effective than as in figure l l-a.  It should also be noted that  since 
Bunruigoihyo is a relatively small-sized thesaurus and does not enumerate many word senses, 
this problem is not critical in our case. However, given other existing thesauri like the EDR 
electronic dictionary [4] or WordNet [15], these two situations should be strictly differentiated. 

6 Conclus ion  

In this paper we proposed an example sampling method for example-based verb sense dis- 
ambiguation. We also reported on the system's performance by way of experiments. The 
experiments showed that our method, which is based on the notion of training utility, has 
reduced the overhead for the training of the system, as well as the size of the database. 

As pointed out in section 1, the generalization of examples [8, 19] is another method for 
reducing the size of the database. Whether coupling these two methods would increase overall 
effectivity is an empirical matter requiring further exploration. 

Future work will include more sophisticated methods for verb sense disambiguation and 
methods of acquiring seeds, the acquisition of which is currently based on an existing dictionary. 
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sense  1 
/ f~ense 2 

sense  1 

Figure ll-a: Interpretation certainty of "x" is 
small because "x" lies in the intersection of dis- 
tinct verb senses 

Figure ll-b: Interpretation certainty of "x" is 
small because "x" is semantically ambiguous 

Figure 11: Two separate scenaries where the interpretation certainty of "x" is small 

We will also build an experimental database for natural language processing using our example 
sampling method. 
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