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A b s t r a c t  

We address the problem of structural disambiguation in syntactic parsing. In psycholinguistics, a 
number of principles of disambiguation have been proposed, notably the Lexical Preference Rule 
(LPR), the Right Association Principle (RAP), and the Attach Low and Parallel Principle (ALPP). 
We argue that in order to improve disambiguation results it is necessary to implement these prin- 
ciples on the basis of a probabilistic methodology. We define a 'three-word probability' for im- 
plementing LPR, and a 'length probability' for implementing RAP and ALPP. Furthermore, we 
adopt the 'back-off' method to combine these two types of probabilities. Our experimental results 
indicate our method to be effective, attaining an accuracy of 89.2%. 

1 I n t r o d u c t i o n  

Structural disambiguation is still a central problem in natural language processing. To completely 
resolve ambiguities, we would need to construct a human-like language understanding system 
(c.f.(Altmann and Steedman, 1988; Johnson-Laird, 1983)). The construction of such a system is 
extremely difficult, however, and we need to adopt a more realistic approach. In psycholinguistics, 
a number of principles have been proposed which attempt to modelize the human disambiguation 
process. The Lexical Preference Rule (LPR) (Ford et al., 1982), the Right Association Principle 
(RAP) (Kimball, 1973), and the Attach Low and Parallel Principle (ALPP, an extension of RAP) 
(Hobbs and Bear, 1990) have been proposed, and it is thought that we might resolve ambiguities 
quite satisfactorily if we could implement these principles sufficiently (Hobbs and Bear, 1990; Whit- 
temore et al., 1990). Methods of implementing these principles have also been proposed (e.g., 
(Shieber, 1983; Wermter, 1989; Wilks et al., 1985)). An alternative approach is to view language 
as a stochastic phenomenon, particularly from the viewpoint of information theory and statistics. 
If we could properly define a probability model 1 and calculate the likelihood value of each interpre- 
tation using the model, we might also resolve ambiguities quite well. There have been a number of 
methods proposed to perform structural disambiguation using probability models, many of which 
have proved to be quite effective (Alshawi and Carter, 1995; Black et al., 1992; Briscoe and Carroll. 
1993; Chang et al., 1992; Collins and Brooks, 1995; Fujisaki, 1989; Hindle and Rooth, 1991; Hindle 
and Rooth, 1993; Jelinek et al., 1990; Magerman and Marcus, 1991; Magerman, 1995; Ratnaparkhi 
et al., 1994; Resnik, 1993; Su and Chang, 1988). 

Although each of the disambiguation methods proposed to date has its merits, none resolves 
the disambiguation problem completely satisfactorily. We feel that it is necessary to devise a new 
method that unifies the above two approaches, i.e., to implement psycholinguistic principles of 
disambiguation on the basis of a probabilistic methodology. Most psycholinguistic principles have 

1A rep resen ta t ion  of a p robab i l i ty  d i s t r ibu t ion  is called a ' p robab i l i ty  model , '  or simplely a 'mode l . '  
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been developed on the basis of a vast data base of actual observations, and thus a method based on 
them is expected to achieve good disambiguation results. Probabilistic methods of implementing 
these principles have the merit of being able to handle noisy data, as well as being able to employ 
a principled methodology for acquiring the knowledge necessary for disambiguation. 

LPR, RAP and ALPP are known to be effective for disambiguation, and these are the ones 
whose implementation we consider in the present paper. Thus our problem involves the following 
three subproblems: (a) resolving structural ambiguities based on LPR in terms of probabilistic 
representations, (b) resolving structural ambiguities based on RAP and ALPP in terms of prob- 
abilistic representations, and (c) combining the two. For subproblem (a), we have devised a new 
method, based on LPR, which has some good properties not shared by the methods proposed so 
far (Alshawi and Carter, 1995; Chang et al., 1992; Collins and Brooks, 1995; Hindle and Rooth, 
1991; Ratnaparkhi et al., 1994; Resnik, 1993). In (Li and Abe, 1995), we have described this method 
in detail. In the present paper, we mainly describe our solutions to subproblems (b) and (c). For 
subproblem (b), we point out that the notion of the 'length' of a syntactic category 2 is important, 
and propose to use a 'length probability' to perform structural disambiguation. For subproblem 
(c), we propose to adopt the 'back-off' method, i.e., to make use first of a lexical likelihood based 
on LPR, and then a syntactic likelihood based on RAP and ALPP. Experiments conducted to test 
the effectiveness of our method demonstrate an encouraging accuracy of 89.2%. 

2 Psycholinguistic Principles of Disambiguation 

In this section, we introduce the psycholinguistic principles of disambiguation. Kimball has pro- 
posed the Right Association Principle (RAP) (Kimball, 1973), which states that (in English) a 
phrase on the right should be attached to the nearest phrase on the left if possible. Hobbs & Bear 
have generalized RAP to the Attach Low and Parallel Principle (ALPP) (Hobbs and Bear, 1990). 
ALPP states that a phrase on the right should be attached to the nearest phrase on the left if 
possible, and that phrases should be attached to a phrase in parallel if possible. (When we refer 
to ALPP. we ordinarily mean just the part concerning attachments in parallel. ) Ford et ah have 
proposed the Lexica] Preference Rule (LPR) which states that an interpretation is to be preferred 
whose case frame assumes more semantically consistent values (Ford et al., 1982). Classically, lexi- 
cal preference is realized by checking consistencies between 'semantic features' of slots and those of 
slot vMues, namely the 'selectionM restrictions' (Katz and Fodor, 1963). The realization of lexical 
preference in terms of selectional restrictions has some disadvantages, however. Interpretations 
obtained in an analysis cannot, for example, be ranked in their preferential order. Thus one cannot 
adopt a strategy of retaining the N most plausible interpretations in an analysis, which is the most 
widely accepted practice at present. In fact it is more appropriate to treat the lexical preference as 
a kind of score representing the association between slots and their values. In the present paper, 
we refer to this kind of score as 'lexical preference.' For the same reason, we also treat 'syntactic 
preference' as a kind of score. 

LPR is a lexical semantic principle, while RAP and ALPP are syntactic ones, and in psycholin- 
guistics it is commonly claimed that LPR overrides RAP and ALPP (Hobbs and Bear, 1990). Let 
us consider some examples of LPR and RAP in this regard. For the sentence 

I ate ice cream with a spoon, (1) 

there are two interpretations; one is 'I ate ice cream using a spoon' and the other 'I ate ice cream and 
a spoon.' In this sentence, a human speaker would certainly assume the former interpretation over 

2The length of a syntactic category in simply defined as the number of words contained in that category. 
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the latter. From the psycholinguistic perspective, this can be explained in the following way: the 
former interpretation has a stronger lexical preference than the latter, and thus is to be preferred 
according to LPR. Moreover, since LPR overrides RAP, the preference is solely determined by LPR. 
For the sentence 

John phoned a man in Chicago, (2) 

there are two interpretations; one is 'John phoned a man who is in Chicago' and the other 'John, 
while in Chicago, phoned a man. '  In this sentence, a human speaker would probably assume the 
former interpretation over the latter. The two interpretations have an equal lexical preference value, 
and thus the preference of the two cannot be determined by LPR. After LPR fails to work, the 
former interpretation is to be preferred according to RAP, because 'a man'  is closer to 'in Chicago' 
than 'phone' in the sentence. 

LPR implies that (in natural language) one should communicate as relevantly as possible, while 
RAP and ALPP implies that  one should communicate as efficiently as possible. Although the phe- 
nomena governed by these principles vary from language to language, the principles themselves, 
we think, are language independent, and thus can be regarded as fundamental principles of human 
communication. According to Whittemore et al. and Hobbs & Bear, nearly all of the ambiguities 
can be resolved by first applying LPR and then RAP and ALPP (Hobbs and Bear, 1990; Whit- 
temore et al., 1990). These observations motivate us strongly to implement these principles for 
disambiguation purposes. 

While there are also other principles proposed in the literature, including the Minimal Attach- 
ment Principle (Frazier and Fodor, 1979), they are generally either not highly functional or are 
covered by the above three principles in any case (Hobbs and Bear, 1990; Whittemore et al., 1990). 

The necessity of developing a disambiguation method with learning ability has recently come 
to be widely recognized. The realization of such a method would make it possible to (a) save the 
cost of defining knowledge by hand (b) do away with the subjectivity inherent in human definition 
(c) make it easier to adapt a natural language analysis system to a new domain. We think that a 
probabilistic approach is especially attractive because it is able to employ a principled methodology 
for acquiring the knowledge necessary for disambiguation. In our research, we implement LPR, RAP 
and ALPP by means of a probabilistic methodology. 

3 L P R  and Lexica l  L ike l ihood  

In this section, we briefly describe our LPR-based probabilistic disambiguation method. 

3.1 T h e  t h r e e - w o r d  p r o b a b i l i t y  

We refer to a syntactic tree and its corresponding case frame, as obtained in an analysis, 'an 
interpretation. '3 After analyzing the sentence in (1), for example, we obtain the case frames of the 
interpretations: 

eat:[argl I, arg2 ice_cream, with spoon], (3) 

and 
eat:[argl I, arg2 ice_cream: [with spoon]]. (4) 

The value assumed by a case slot of a case frame of a verb can be viewed as being generated 
according a conditional probability distribution: 

P(nlv, s), 

3We do not take into account ambiguities caused by word senses. 

(5) 
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where random variable v takes on a value of a set of verbs, n a value of a set of nouns, and .s a 
value of a set of slot names. Similarly, the value assumed by a case slot of a case frame of a noun 
can be viewed as being generated by a conditional probability distribution: P(nln  , s). We call this 
kind of conditional probability the ' three-word probability.' Moreover, we assume that  the three- 
word probabilities in the case frame of an interpretation are mutually independent,  and define the 
geometric mean of the three-word probabilities as the 'lexical likelihood' of the interpretation: 

m 

pt x(x) = (H (6) 
i=1 

where Pi is the ith three-word probability in the case frame of interpretation I ,  and m the number 
of three-word probabilities in it. The lexical likelihood values of the two interpretations in (3) and 
(4) are thus calculated as 

Pt~x(I1) = (P(Ileat ,  argl)  x P(ice_creamleat,arg2 ) × P(spoonleat ,with))! /3 ,  (7) 

and 

Pzex(I2) = (P(Ileat ,  argl)  × P(ice_creamleat ,arg2) × P(spoon]ice_cream, with)) 1/3. (8) 

In disambiguation, we simply rank the interpretations according to their lexical likelihood values. If 
a verb (or a noun) has a strong tendency to require a certain noun as the value of its case frame slot, 
the estimated three-word probability for such a co-currence will be very high. To prefer an inter- 
pretation with a higher lexical likelihood value, then, is to prefer it based on its lexical preference. 
Specifically, in order to perform pp-at tachment  disambiguation in analysis of sentences like (1), we 
need only calculate and compare the values of P(spoonleat ,  with ) and P(spoonlice_cream,with ). 
In sentences like 

A number of companies sell and buy by computer,  (9) 

the number of three-word probabilities in each of its respective case frames will be different. If we 
were to define a lexical likelihood as the product of the three-word probabilities in the case frame of 
an interpretation, an interpretat ion with fewer case slots would be preferred. We use the definition 
of lexical likelihood described above to avoid this problem. 4 

3.2 The data sparseness problem 

Hindle & Rooth have previously proposed resolving pp-at tachment  ambiguities with 'two-word 
probabilities' (Hindle and Rooth, 1991), e.g., P(withl ice_cream),P(withleat) ,  but these are not 
accurate enough to represent lexical preference. For example, in the sentences, 

Britain reopened the embassy in December, 
Britain reopened the embassy in Teheran, (10) 

the pp-at tachment  sites of the two prepositional phrases are different. The a t tachment  sites would 
be determined to be the same, however, if we were to use two-word probabilities (c:f.(Resnik, 1993)), 
and thus the ambiguity of only one of the sentences can be resolved. It is very likely, however, that  
this kind of ambiguity could be resolved satisfactorily by using the three-word probabilities. 

The number of para.meters that  need to be estimated increases drastically when we use three- 
word probabilities, and the data  available for estimation of the probability parameters usually are 

4An alternative for resolving coordinate structure ambiguities is to employ a method which examines the similarity 
that exists between conjuncts (c.f.(Kutohashi and Na~ao, 1994; Resnik, 1993)). 
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not sufficient in practice. If we employ the Maximum Likelihood Estimator,  we may find most of 
the parameters are estimated to be 0: a problem often referred to, in statistical natural  language 
processing, as the 'data  sparseness problem.' (the motivation for using the two-word probabilities in 
(Hindle and Rooth, 1991) appears to be a desire to avoid the data  sparseness problem. ) One may 
expect this problem to be less severe in the future, when more data  are available. However, as data  
size increases, new words may appear, and the number of parameters that  need to be estimated 
may increase as well. Thus, the data  sparseness problem is unlikely to be resolved. A number of 
methods have been proposed, however, to cope with the data  sparseness problem. Chang et al., 
for instance, have proposed replacing words with word classes and using class-based co-occurrence 
probabilities (Chang et al., 1992). However, forcibly replacing words with certain word classes 
is too loose an approximation, which, in practice, could seriously degrade disambiguation results. 
Resnik has defined a probabilistic measure called 'selectional association' in terms of the word 
classes existing in a given thesaurus. While Resnik's method is based on an interesting intuition, 
the justification of this method from the viewpoint of statistics is still not clear. We have devised 
a method of estimating the three-word probabilities in an efficient and theoretically sound way 
(Li and Abe, 1995). Our method selects optimal word classes according to the distribution of 
given data, and smoothes the three-word probabilities using the selected classes. Experimental 
results indicate that  our method improves upon or is at least as effective as existing methods. 
Using our method of estimating (smoothing) probabilities, we can cope with the data  sparseness 
problem. However, for the same reason as described above, the data sparseness problem cannot be 
resolved completely. We propose combining the use of three-word probabilities and that  of two- 
word probabilities. Specifically, we first use the lexical likelihood value calculated as the geometric 
mean of the three-word probabilities of an interpretation, and when the lexical likelihood values of 
obtained interpretations are equal, including the case in which all of them are 0, we use the lexical 
likelihood value calculated as the geometric mean of the two-word probabilities of an interpretation. 

4 RAP,ALPP,  and Syntactic Likelihood 

In this section, we describe our probabilistic disambiguation method based on RAP and ALPP. 

4.1 The determinist ic  approach 

Shieber has previously proposed incorporating RAP into the mechanism of a shift-reduce parser 
(Shieber, 1983). When RAP is implemented, the parser prefers shift to reduce whenever a 'shift- 
reduce conflict' occurs. The advantage of this deterministic approach is its simple mechanism, 
while the disadvantage is that although it can output the most preferred interpretation, it cannot 
rank interpretations in their preferential order. In order to  be able to rank interpretations in this 
way, it is necessary to construct a parser which operates stochastically, not deterministically. 

4.2 Formalizing a syntactic  preference 

In this subsection, we formalize a syntactic preference based on RAP and ALPP. While we borrow 
from the terminology of HPSG (Pollard and Sag, 1987) in our reference to 'head'  categories, we 
also use the single term 'modifier' categories to refer to categories which HPSG would classify as 
being either 'complements '  or 'adjuncts. '  We refer to that  word which exhibits the subcategory 
feature of a category to be that  category's 'head word.' 

Let us consider a simple case in which we are dealing with a modifier category M, a head 
category H,  and the head word of H,  w. We first apply CFG rule L - -  H, M to H and M, yielding 
category L (see Figure l(a)) .  We refer to the number of words in a given sequence as 'distance.'  
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L L 

(a) (b) 

Figure 1: RAP, ALPP and length 

As may be seen in Figure l(a), the distance between M and w is d. RAP prefers an interpretation 
with a smaller d. Thus, syntactic preference can be represented by a monotonically decreasing 
function of d. Since in English the head word w of category H tends to locate near its left corner, 
we can approximate d as l, the number of words contained in H. In this paper, we call the number 
of words contained in a category the 'length' of that  category. In addition, syntactic preference 
also depends on type of head category and modifier category. Assuming that  1 is known to be 5, if 
H is a verb phrase and M is a prepositional phrase, the preference value is likely to be high, but if 
H is a noun phrase and M is a prepositional phrase, it is likely to be low. Since category type can 
be specified within a CFG rule, syntactic preference can be defined as a function of a CFG rule. 
Syntactic preference based on RAP can be formalized, then, as a function of CFG rule L --  H, M 
and length l, namely, 

S(l, (L ~ H, M)). (11) 

Suppose that categories R1 and R2 form a coordinate structure, and 11 and 12 are the lengths 
of R1 and R2, respectively. ALPP prefers categories forming a coordinate structure to be of equal 
length (see Figure l(b)). Preference value will be high when ll equals 12, and syntactic preference 
based on ALPP 's can be defined as 

S(ll,12,(L ~ Ri,C, R2)). (12) 

Further, suppose that  categories R1, R 2 , . . . ,  Rk are combined into category A, and 11,12,..., lk 
are the lengths of R1, R2, . . . ,  Rk, respectively. Syntactic preference of the at tachment can then be 
defined as 

S(ll, I2,.. . ,  Ik, (L ~ R1, R 2 , . . . ,  Rk)). (13) 

Note that  (13) contains (11) and (12). Furthermore, we assume that the at tachments in the 
syntactic tree of an interpretation are mutually independent,  and we define the product (or the 
sum, depending on the preference function) of the syntactic preference values of the at tachments 
in the syntactic tree of the interpretation as the syntactic preference of the interpretation: 

m 

s .n(I) = (14) 
i = l  

where Si denotes the syntactic preference value of the ith attachment in the syntactic tree of 
interpretation I,  and m the number of at tachments in it. 

5This kind of syntactic preference requires that the CFG rules for coordinate structures have the form L 
Ri, C, R2, C, . . . ,  C, Rk. 
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4.3 T h e  l e n g t h  p r o b a b i l i t y  

We now consider how to specify the syntactic preference function in (13). As there are any number 
of ways to formulate the function (note the fact that syntactic preference is also a function of a 
CFG rule.), it is nearly impossible to find the most suitable formula experimentally. To cope with 
this problem, we used machine learning techniques (recall the merits of using machine learning 
techniques in disambiguation, as described in Section 2). Specifically, we have defined a probability 
model to calculate syntactic preference. Suppose that attachments represented by CFG rules and 
lengths are extracted from the correct syntactic trees in training data, and the frequency of each 
kind of at tachment is obtained as 

f ( l l ,  12, . . . .  4,  (L ~ R1, R2,. • •, Rk )), (15) 

where L ~ R1, R2 , . . . ,  Rk denotes a CFG rule, and 11,12,..., Ik denote the lengths of R1, R2,. • •, Rk~ 
respectively. RAP prefers an interpretation attached to a nearer phrase, while ALPP prefers inter- 
pretations with attachments that are low and in parallel. Many such attachments may be observed 
in the training data, and we can formulate the frequencies of attachments (15) as a syntactic pref- 
erence. Considering the fact that individual rules will be applied with different frequency, it is 
desirable to modify the syntactic preference to 

f ( l l ,  12,..., lk, (L  ~ R1, R 2 , . . . ,  Rk )) (16) 
f ( (L  -- R1, R2 , . . . ,  Rk)) ' 

where f ( (L  -+ R1, R2 , . . . ,  Rk)) denotes the frequence of application of CFG rule L --+ R1, R~ , . . . ,  Rk. 
This is precisely the 'length probability' we propose in this paper. 

Let us now define the length probability more formally. Suppose that an at tachment is obtained 
after the application of C FG rule L -+ R1, R2,. • •, Rk, the lengths of R1, R 2 , . . . ,  Rk are 11,12,. • . ,  4 ,  
respectively. The at tachment can be viewed as being generated by the following conditional distri- 
bution: 

P(li,  12,..., lk[(L -+ Ra, R 2 , . . . ,  Rk)). (17) 

We call this kind of conditional probability the 'length probability.' 6 Furthermore, the syntactic 
likelihood of an interpretation is defined as the geometric mean of the length probabilities of the 
attachments in the syntactic tree of the interpretation, assuming that the attachments are mutually 
independent: 

m 

Psyn(I) (1~ Pi)£ = m, (18) 
i=1 

where Pi is the ith length probability in the syntactic tree of interpretation I,  and m the number 
of length probabilities in it. We define syntactic likelihood as the geometric mean of the length 
probabilities, rather than as the product of the length probabilities, in order to factor out the effect 
of the different number of attachments in the syntactic trees of individual interpretations. When 
training the length probabilities, the parameters in (16) may be estimated using the frequences in 
(15). 

Next, let us consider a simple example illustrating how the operation of this model indicates 
the functioning of RAP. For the phrase shown in Figure 2(a), there are two interpretations; RAP 

6The number  of parameters  in a length probabi l i ty  model depends  on k - the number  of categories on the right-  
hand side of a CFG rule, and N - the max imum value of lengths of a category on the lef t -hand side of the rule: 

~i=k-1 k - 1 - 1 = k - 1. As k is very small (in our case k < 3), the number  of parameters  in a length 

probabi l i ty  model  is of N ' s  polynomial  order.  
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would necessarily prefer the former. The difference between the syntactic likelihood values of the 
two interpretations is solely determined by 

and 

P(1,5I(PP --  P, N P ) )  × P(2,6I(NP - .  NP,  PP)) ,  (19) 

P(1,21(PP --  P, NP) )  × P(5 ,3I(NP --  NP,  PP)).  (20) 

First, let us compare the left-hand length probabilities of (19) and (20). Both represent an attach- 
ment of N P  to P ,  and the length of P is 1 in both terms. Thus the two estimated probabilities may 
not differ so greatly. Next, compare the right-hand length probabilities in (19) and (20). While 
both represent an at tachment of P P  to NP,  the length of N P  of the former is 2 and that of the 
latter is 5. Thus the second length probability in (19) is likely to be higher than that  in (20), as in 
training data there are more phrases attached to nearby phrases than are attached to distant ones. 
Therefore, when we use only the syntactic likelihood to perform disambiguation, we can expect the 
former interpretation in Figure 2(a) to be preferred, i.e., we have an indication of the functioning 
of RAP. 

Let us consider another example illustrating how the operation of the length probability model 
indicates the functioning of ALPP. For the sentence shown in Figure 2(b), there are two interpre- 
tations; ALPP would necessarily prefer the former. The difference between the syntactic likelihood 
values of the two interpretations is solely determined by 

P(3,21(VP ---+ VP, PP))  x P(1,1,11(VP ---~ VP, C, VP)) ,  (21) 

and 
P(1,21(VP --  VP, PP))  x P(1 ,1 ,3I (VP --  VP, C, VP)).  (22) 

First, let us compare the left-hand length probabilities in (21) and (22). Both represent an at- 
tachment of PP to VP, but the length of VP of the former is 3 and that of the latter is I. The 
left-hand probability in (21) is likely to be lower than that in (22). Next, compare the right-hand 
length probabilities in (21) and (22). Both represent a coordinate structure consisting of VPs. The 
lengths of VPs in the latter are equal, while the lengths of VPs in the former are not. Thus the 
right-hand probability in (21) is likely to be higher than that in (22). Moreover, the difference 
between the right-hand probabilities is likely to be higher than that between the left-hand prob- 
abilities, and thus the syntactic likelihood value of the former interpretation will be higher than 
that of the latter. Therefore, when we use only the syntactic likelihood to perform disambiguation, 
we can expect the former interpretation in Figure 2(b) to be preferred. 

4.4 R e l a t e d  w o r k  

Another approach to disambiguation is to define a probability model and to rank interpretations on 
the basis of syntactic parsing. One method of this type employs the well-known PCFG (Probabilistic 
Context Free Grammar) model (Fujisaki, 1989; Jelinek et al., 1990; Lari and Young, 1990). In 
PCFG, a CFG rule having the form of a, -- 3 is associated with a conditional probability P(~Ia), 
and the likelihood of a syntactic tree is defined as the product of the conditional probabilities of 
the rules which are applied in the derivation of that  tree. Other methods have also been proposed. 
Magerman ~ Marcus, for instance, have proposed making use of a conditional probability model 
specifying a conditional probability of a CFG rule, given the part-of-speech trigram it dominates 
and its parent rule (Magerman and Marcus, 1991). Black et al. have defined a richer model to 
utilize all the information in the top-down derivation of a non-terminal (Black et al., 1992). Briscoe 
& Carroll have proposed using a probabilistic model specific to LR parsing (Briscoe and Carroll, 
1993). 
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t h e  b l o c k  o n  t h e  t a b l e  i n  t h e  r o o m  

t h e  b l o c k  P : I  N P : 5  

II II 
t h e  t a b l e  i n  t h e  r o o m  

N P : ~  

N P : 2  P P : 3  P P : 3  

Ii ii 
t h e  b l o c k  P : I  N P : 2  i n  t h e  r o o m  

il fl 
o n  t h e  t a b l e  

N o n - t e r m i n a l :  l e n g t h  

A n u m b e r  o f  c o m p a n i e s  s e l l  e n d  b u y  by  c o m p u t e r  

by  c o m p u t e r  

It' 
s e l l  a n d  b u y  

s e l l  a n d  

b u y  by  c o m p u t e r  

Non- termine l :  l e n g t h  

(a) (b) 

Figure 2: Examples of syntactic parsing 

The advantage of the syntactic parsing approach is that it mGv embody heuristics (principles) 
effective in disambiguation, which would not have been thought of by humans, but it also risks not 
embodying heuristics (principles) already known to be effective in disambiguation. For example, 
the two interpretations of the noun phrase shown in Figure 2(a) have an equal likelihood value, if 
we employ PCFG, although the former would be preferred according to RAP. 

5 The  Back-Off  M e t h o d  

Having defined a lexical likelihood based on LPR and a syntactic likelihood based on RAP and 
ALPP, we may next consider how to combine the two kinds of likelihood in disambiguation. One 
choice is to calculate total preference as a weighted average of likelihood values, as proposed in 
(Alshawi and Carter, 1995). However since LPR overrides RAP and ALPP, a simpler approach is 
to adopt the back-off method,  i.e., to rank interpretat ions/1 and I2 as follows: 

1. if Plex ( I1 ) -  Pl=(Is)  > r/ then /1 > / 2  
2. else if Plex(I2) - Plex(I1) > 7/ then Is > / 1  
3. else if P~yn( I1) -  P~yn(Is) > r then /1 > Is 
4. else if P~yn( I s ) -  P~yn(I1) > r then /2 > / 1  

(23) 

where/1 and /2  denote any two interpretations, Pl=() denotes the lexical likelihood of an interpre- 
tation, and Psyn() the syntactic likelihood of an interpretation. ~ > 0 and r > 0 are thresholds (in 
the experiment described later, both are set to 0). Note that in lines 3 and 4, IPtex(I1)-Pzex(I2)l < r I 
holds. Further note that the preferential order cannot be determined (or can only be determined 
at random) when IPi=(I1) - Plex(Is)] _< ~ and IPsyn(I1) - Psyn(Is)] ~ 7". 

6 E x p e r i m e n t a l  Resu l t s  

We have conducted experiments to test the effectiveness of our proposed method. This section 
describes the results. In the experiments, we considered only resolving pp-attachment ambigui- 
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ties and coordinate structure ambiguities. These two kinds of ambiguities are typical, and other 
ambiguities can be resolved in the same way (Hobbs and Bear, 1990). 

We first defined 12 CFG rules as our grammar to be used by a parser which calculates a prefer- 
ence for each partial interpretation, and always retains the N most preferable partial interpretations 7. 
We have not yet actually constructed such a parser, however, and use a parser called 'SAX,' pre- 
viously developed by Matsumoto & Sugimura (Matsumoto and Sugimura, 1986), which calculates 
a preference for each interpretation after it obtains each interpretation. 

We then trained the parameters of probability models. We extracted 181,250 case frames from 
the WSJ (Wall Street Journal) bracketed corpus of the Penn Tree Bank (Marcus et al., 1993). 
We used these data to estimate three-word probabilities and two-word probabilities• Furthermore, 
we extracted 963 sentences from the WSJ tagged corpus of the Penn Tree Bank. We used SAX 
to analyze the sentences and selected the correct syntactic trees by hand. We then employed 
the Maximum Likelihood Estimator to estimate length probabilities using the selected syntactic 
trees, e.g., if CFG rule N P  ~ NP, P P  is applied x times, and among the attachments obtained by 
applying this rule, xi of them have the lengths of 2 and 3, then the length probability P(2, 31(NP 
NP, PP))  is estimated as ~ .  It is known, in statistics, that the number of samples required for 
accurate estimation of a probabilistic model is roughly proportional to the number of parameters 
in the target model, and thus the data used for training length probabilities were nearly sufficient. 
Figure 3 plots the estimated length probabilities versus the lengths, for two CFG rules. The result 
indicates that there are more attachments attached to nearby phrases than are attached to distant 
ones in the training data. Moreover, the length probabilities for CFG rule V P  ~ VP, P P  and 
those for CFG rule N P  ~ NP, P P  show different distribution patterns, suggesting that syntactic 
preference is a function of a CFG rule. 
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0.25 
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Figure 3: Length probability versus length 

We then extracted 249 sentences from a part of the 
in training as our test data and analyzed the sentences. 
obtained interpretations as follows: 

if 
else if 
else if 
else if 
else if 
else if 

tagged WSJ corpus which was not used 
When analizing a sentence, we rank the 

tit is necessary to do so, as the number 
increases (Church and Patil, 1982). 

Ptex3(I1) > P/~x3(I2) then 
Plex3(I2) > Pl~x3(I1) then 
Pte,2(I1) > Pzex2(I2) then 
Pzex2(I2) > Pt~2(I1) then 
Psyn(I1) > Psyn(I2) then 
Psyn(I2) > Psyn(I1) then 

II > I2 
f2 > f l  

11>12 
I2>I1 
X1>~2 
I2>I1 

(24) 

of ambiguities will increase drastically when the length of an input, sentence 
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where /1 and I2 denote any two interpretations. Ptex3() denotes the lexical likelihood value of 
an interpretation calculated as the geometric mean of three-word probabilities, Pte,2() the lexical 
likelihood value of an interpretation calculated as the geometric mean of two-word probabilities, and 
Psyn() the syntactic likelihood value of an interpretation. The average number of interpretations 
obtained in the analysis of a sentence was 2.4. 

Table 1: Disambiguation results 

Method Accuracy(%) 
Lex3+Lex2+Syn 89.2 
Lex3+Lex2+PCFG 86.7 
Lex3 (Lex2) × Syn 87.1 

Table 2: Breakdown of [Lex3+Lex2+SynJ 

Lex3 
Lex2 
Syn 
Total 

Correct Incorrect 
112 5 
94 14 
16 i 8 

222 27 

Total 
117 
108 
24 

249 

0,95 

09  

085 

08  

0.75 

0 . 7  

0.65' 

0.0 . ~ :  := 
0.5,5 ~ 

0.5 
2 ~ 4 

Figure 4: The top 5 accuracies 

The number i accuracy obtained was 89.2% (Table 1 represents this result as 'Lex3+Lex2+Syn'),  
where the number n accuracy is defined as the fraction of the test sentences whose preferred inter- 
pretation is successfully ranked in the first n candidates. We feel that this result is very encouraging. 
Table 2 shows the breakdown of the result, in which 'Lex3' stands for the proportion determined by 
using lexical likelihood Pzex3, 'Lex2' by using lexical likelihood Pl~x2, and 'Syn' by using syntactic 
likelihood Psyn. The accuracies of 'Lex3,' 'Lex2,' and 'Syn' were 95.7%, 87.0%, and 66.7%, respec- 
tively. Furthermore, 'Lex3,' 'Lex2,' and 'Syn' formed 47.0%, 43.4%, and 9.6% of the disambiguation 
results, respectively. 

We further examined the types of mistakes made by our method. First, there were some 
mistakes by 'Syn.' For example, in 

Rain washes the fertilizers off the land, (25) 
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there are two interpretations. The lexical likelihood values Pt¢~3 of the two interpretations were 
calculated as 0, and the lexical likelihood values Pt~x2 of the two interpretations were calculated as 
0, as well. The interpretations were ranked by the syntactic likelihood Psy~, and the interpretation 
of attaching the 'off' phrase to 'fertilizer' was mistakenly preferred. We also found some mistakes 
by 'Lex2.' For example, in 

The parents reclaimed the child under the circumstances, (26) 

there are two interpretations. The lexical likelihood values Pt~.~3 of the two interpretations were 
calculated as 0. The lexical likelihood value Pl~2 of the interpretation of attaching 'under' phrase 
to 'child' was higher than that of attaching it to 'reclaimed,' as there were many expressions like 'a 
child under five' observed in the training data. And thus the former interpretation was mistakenly 
preferred. It is obvious that these kinds of mistakes could be avoided if more data were available. 
We conclude that the most effective way of improving disambiguation results is to increase data 
for training lexical preference. 

We further checked the disambiguation decisions made by 'Syn' when 'Lex3' and 'Lex2' fail to 
work, and found that all of the prepositional phrases in these sentences were attached to nearby 
phrases by 'Syn,' indicating that using syntactic likelihood can help to achieve a functioning of 
RAP. One may argue that we could obtain the same number 1 accuracy if we were to employ 
a deterministic approach in implementing RAP. As we pointed out earlier, however, if we are to 
obtain the N most preferred interpretations, we need to use syntactic likelihood. To verify that 
the syntactic likelihood is indeed useful, we conducted the following additional experiment. We 
ranked the interpretations of each of the 249 test sentences using only syntactic likelihood. We also 
selected the interpretation with phrases always attached to nearby phrases as the most preferred 
ones, and randomly selected interpretations from what remain as the nth most preferred ones. We 
evaluated the results on the basis of the number n accuracy. Figure 4 shows the top 5 accuracies 
of the stochastic approach and the deterministic approach. The results indicate that the former 
outperforms the latter. (The number 2 accuracy for both methods increases drastically, as many 
test sentences have only two interpretations.} The improvement is not significant, however. We 
expect the effect of the use of the syntactic likelihood to become more significant when longer 
sentences are used in future analyses. 

In place of a length probability model, we used PCFG for calculating syntactic preference. We 
employed the Maximum Likelihood Estimator to estimate the parameters of PCFG (we did not 
use the so-called 'inside-outside algorithm' (Jelinek et al., 1990; Lari and Young, 1990)), making 
use of the same training data as those used for the length probability model. Table 1 represents 
this result as 'Lex3+Lex2+PCFG.'  Our experimental results indicate that our method of using a 
length probability model outperforms that of using PCFG. 

Instead of the back-off method, we used the product of lexical likelihood values and syntactic 
likelihood values to rank interpretations. When using lexical likelihood, we use a lexical likeli- 
hood value calculated fl'om three-word probabilities, provided that it is not 0, otherwise we use 
a lexical likelihood value calculated from two-word probabilities. Table 1 represents this result as 
'Lex3(Lex2)x Syn.' When the preference values of all of the interpretations obtained are calculated 
as 0, we rank the interpretations at random. Our results indicate that it is preferable to employ 
the back-off method. 

7 Concluding Remarks 

We have proposed a probabilistic method of disambiguation based on psycholinguistic principles. 
Our main proposals are: (a) to unify the psycholinguistic approach and the probabilistic approach, 
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specifically, to implement psycholinguistic principles on the basis of probabilistic methodology. (b) 
to use the notion of 'length' in defining a probabilistic model for the implementation of RAP and 
ALPP, and (c) to employ the back-off method to combine the use of lexical likelihood with that of 
syntactic likelihood. Our experimental results indicate that our method is quite effective. 
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