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A b s t r a c t  

T h e  f i r s t  s t e p  in  m o s t  c o r p u s - b a s e d  mul -  
t i l i ngua l  N L P  work  is t o  c o n s t r u c t  a de- 
t a i l e d  m a p  o f  t h e  c o r r e s p o n d e n c e  b e t w e e n  
a t e x t  a n d  i ts  t r a n s l a t i o n .  Seve ra l  au to -  
m a t i c  m e t h o d s  fo r  th i s  t a sk  have  b e e n  p ro-  
p o s e d  in  r e c e n t  yea r s .  "Yet e v e n  t h e  b e s t  
o f  t h e s e  m e t h o d s  can  e r r  by  seve ra l  t y p e s e t  
pages .  T h e  S m o o t h  I n j e c t i v e  M a p  Recog-  
n i z e r  ( S I M R )  is a new  b i t e x t  m a p p i n g  al- 
g o r i t h m .  S I M R ' s  e r r o r s  a r e  s m a l l e r  t h a n  
t h o s e  o f  t h e  p r e v i o u s  f r o n t - r u n n e r  by  m o r e  
t h a n  a f a c t o r  o f  4. I t s  r o b u s t n e s s  has  en- 
a b l e d  n e w  c o m m e r c i a l - q u a l i t y  app l i c a t i o n s .  
T h e  g r e e d y  n a t u r e  o f  t h e  a l g o r i t h m  m a k e s  i t  
i n d e p e n d e n t  o f  m e m o r y  r e sou rce s .  Un l ike  
o t h e r  b i t e x t  m a p p i n g  a l g o r i t h m s ,  S I M R  al- 
lows c ross ing  c o r r e s p o n d e n c e s  to  a c c o u n t  
fo r  w o r d  o r d e r  d i f fe rences .  I t s  o u t p u t  can  
be  c o n v e r t e d  qu ick ly  a n d  eas i ly  i n to  a sen- 
t e n c e  a l i g n m e n t .  S I M R ' s  o u t p u t  has  b e e n  
u s e d  to  a l ign  m o r e  t h a n  200 m e g a b y t e s  o f  
t h e  C a n a d i a n  H a n s a r d s  fo r  p u b l i c a t i o n  b y  
t h e  L i n g u i s t i c  D a t a  C o n s o r t i u m .  

1. I n t r o d u c t i o n  

The first step in most corpus-based multilin- 
gual NLP work is to construct a detailed map 
of the correspondence between a text and its 
translation (a b i t e x t  map) .  Several auto- 
matic methods have been proposed for this 
task in recent years. However, most of these 
methods address only the sub-problem of align- 
ment (Catizone et al. 1989, Brown et al. 1991, 
Gale & Church 1991, Debili & Sammouda 1992, 
Simard et al. 1992, Kay & RSscheisen 1993, 
Wu 1994). Alignment algorithms assume the 
availability of text unit boundary information and 
their output  has less expressive power than a gen- 
eral bitext map. The only published solution to 
the more difficult general bitext mapping problem 
(Church 1993) can err by several typeset pages. 
Such frailty can expose lexicographers and ter- 

minologists to spurious concordances, feed noisy 
training data into statistical translation models, 
and degrade the performance of corpus-based ma- 
chine translation. Some multilingual NLP tasks, 
such as automatic validation of terminological con- 
sistency (Macklovitch 1995) and automatic detec- 
tion of omissions in translations (implemented for 
the first time in (Melamed 1996)), have been tech- 
nologically impossible until now, because they are 
highly sensitive to large errors in the bitext map. 

The Smooth Injective Map Recognizer 
(SIMR) is a greedy algorithm for mapping bitext 
correspondence. SIMR borrows several insights 
from previous work. Like Gale & Church (1991) 
and Brown et al. (1991), SIMR relies on the high 
correlation between the lengths of mutual trans- 
lations. Like char_.align (Church 1993), SIMR 
infers bitext maps from likely points of correspon- 
dence between the two texts, points that  are plot- 
ted in a two-dimensional space of possibilities. Un- 
like previous methods, SIMR searches for only a 
handful of points of correspondence at a time. 

Each set of correspondence points is found 
in two steps. First, SIMR generates a number 
of possible points of correspondence between the 
two texts, as described in Section 3.1. Second, 
SIMR selects those points whose geometric ar- 
rangement most resembles the typical arrange- 
ment of true points of correspondence. This selec- 
tion involves localized pattern recognition heuris- 
tics, which Section 3.2 refers to collectively as the 
cha in  r e c o g n i t i o n  heu r i s t i c .  SIMR then inter- 
polates between successive selected points to pro- 
duce a bitext map, as described in Section 3.3. 

2.  D e f i n i t i o n s  

Several key terms will help to explain SIMR. First, 
a b i t e x t  (Harris 1988) comprises two versions of 
a text, such as a text in two different languages. 
Translators create a bitext each time they trans- 
late a text. Second, each bitext defines a rectan- 
gular b i t e x t  space,  such as Figure 1. The width 



O4 

._C 
C 
0 

0 Q. 

-8 
II 
>., 

terminus 

~ diagona 

origin x = character position in text 1 
Figure 1: a bi~ext space 

and height of the rectangle are the lengths of the 
two component  texts, in characters. The lower 
left corner of the rectangle is the o r i g i n  of the 
bitext space and represents the two texts '  begin- 
nings. The upper right corner is the t e r m i n u s  
and represents the texts '  ends. The line between 
the origin and the terminus is the m a i n  d iago-  
nal .  The slope of the main diagonal is the b i t e x t  
s lope .  

Each bitext space contains a number of t r u e  
p o i n t s  o f  c o r r e s p o n d e n c e  ( T P C s ) ,  other than 
the origin and the terminus. For example, if a to- 
ken at position p on the x-axis and a token at posi- 
tion q on the y-axis are translations of each other, 
then the coordinate (p, q) in the bitext space is a 
T P C  1. T P C s  also exist at corresponding bound- 
aries of text units such as sentences, paragraphs,  
and sections. Groups of TPCs  with a roughly 
linear arrangement  in the bitext space are called 
cha ins .  

B i t e x t  m a p s  are bijective functions in bitext 
spaces. For each b i t ex t ,  the t r u e  b i t e x t  m a p  
( T B M )  is the shortest bitext map that  runs 
through all the TPCs.  The purpose of a b i t e x t  
m a p p i n g  a l g o r i t h m  is to produce bitext maps 
that  are the best possible approximations of each 
bi text 's  TBM. 

3. S I M R  

Most of SIMR's  effort is spent searching for TPCs,  
one short chain at a time. The search for each 
chain begins in a small rectangular region of the 
bitext space, whose dimensions are proportional to 
those of the whole bitext space. Within this search 

1Since distances in the bitext space are measured 
in characters, the position of a token is defined to be 
the mean position of its characters. 

rectangle, the search alternates between a gener- 
ation phase and a recognition phase, which are 
described in more detail in Sections 3.1 and 3.2. 
In the generation phase, SIMR generates all the 
points of correspondence that  satisfy the supplied 
matching predicate (explained below). In the 
recognition phase, SIMR calls the chain recogni- 
tion heuristic to search for suitable chains among 
the generated points. If no suitable chains are 
found, the search rectangle is proport ionally ex- 
panded up and to the right and the generation- 
recognition cycle is repeated. The rectangle keeps 
expanding until at least one acceptable chain is 
found. If more than one chain is found, SIMR ac- 
cepts the chain whose points are least dispersed 
around its least-squares line. Then, SIMR selects 
another region of the bitext space to search for the 
next chain. 

SIMR employs a simple heuristic to select re- 
gions of the bitext space to search. To a first 
approximation,  TBMs are monotonically increas- 
ing functions. This means that  if SIMR accepts a 
chain, it should look for others either above and 
to the right or below and to the left of the one 
it has just  located. All SIMR needs is a place to 
start  the trace, and a good place to s tar t  is at the 
beginning. The origin of the bitext space is always 
a TPC.  So, the first search rectangle is anchored 
at the origin. Subsequent search rectangles are 
anchored at the top right corner of the previously 
found chain, as shown in Figure 2. 

[e disc°veredTPC 1 o ° ~  
o undiscoverdTPC | o 7 

main ~ s e a r c h - ~  search 

J • • ~reviouschain 

Figure 2: SIMR's  "expanding rectangle" search 
strategy. The search reclangle is anchored at the 
top right corner of the previously found chain. Its 
diagonal remains parallel to the main diagonal. 

The expanding-rectangle search strategy 
makes SIMR robust in the face of TBM discontinu- 
ities. Figure 2 shows a segment of the TBM trace 
that  contains a vertical gap (an omission in the 
text on the x-axis). As the search rectangle grows, 
it will eventually pick up the TBM's  trail, even if 
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the discontinuity is quite large (Melamed 1996). 
Section 3.8 explains why SIMR will not be led 
astray by false points of correspondence. 

3.1 P o i n t  G e n e r a t i o n  

A m a t c h i n g  p r e d i c a t e  is a heuristic for guess- 
ing whether a given point in the bitext space is a 
TPC.  I have considered only token-based match- 
ing predicates, which can only return TRUE for a 
point (x, y) if x is the position of a token e on the 
x-axis and y is the position of a token f on the y- 
axis. For each such point, the matching predicate 
must decide whether the e and f are likely to be 
mutual translations. 

Various knowledge sources can be brought 
to bear on the decision. The most universal 
knowledge source is a translation lexicon. Trans- 
lation lexicons can be extracted from machine- 
readable bilingual dictionaries (MRBDs), in the 
rare cases where MRBDs are available. In other 
cases, they can be induced automatically using any 
of several existing methods (Dagan et al. 1993, 
Fung ~ Church 1991, Melamed 1995). Since the 
matching predicate does not require perfect ac- 
curacy, the induced lexicons need not be perfect. 
When a large translation lexicon is not available, a 
small hand-constructed translation lexicon for the 
key terms in a given bitext may suffice to produce 
a rough map for that  bitext. 

If the languages involved have similar alpha- 
bets, then it may be possible to construct a match- 
ing predicate with very little effort, using the 
method of cognates. Cognates are words with 
a common etymology and a similar meaning in 
different languages. The etymological similar- 
ity is often reflected in the words' orthography 
and/or  pronunciation. Languages that are closely 
related will often share a large number of cog- 
nates. For example, in the non-technical Cana- 
dian Hansards (parliamentary debate transcripts 
available in English and French), cognates can be 
found for roughly one quarter of all text tokens 
(Melamed 1995). A cognate-based matching pred- 
icate will generate more points for more similar 
language pairs, and for text genres where more 
word borrowing occurs, such as technical texts. 
For English and French, such a matching predicate 
can generate enough points in the bitext space to 
obviate the need for a translation lexicon. 

Phonetic cognates can be used to map be- 
tween language pairs with dissimilar alphabets, 
even when the languages are not closely related. 
When language L1 borrows a word from language 
L2, the word is usually written in L1 similarly 
to the way it sounds in L2. Thus, French and 
Russian /p~rtmone/  are cognates, as are English 
/ s I s t o m / a n d  Japanese/~isutemu/ .  For many lan- 
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Figure 3: Part of a typical scatterplot in bitext 
space, the true points of correspondence trace the 
true bitext map parallel to the main diagonal. 

guages, it is not difficult to construct an approxi- 
mate mapping from the orthography to its under- 
lying phonological form. Given such a mapping 
for L1 and L2, it is possible to identify cognates 
despite incomparable orthographies. 

SIMR was tested on French and English with 
two different matching predicates. The first 
matching predicate relies on orthographic cog- 
nates and a stop-list of closed-class words for both 
languages. SIMR judges the cognateness of each 
token pair by their Longest Common Subsequence 
Ratio (LCSR). The LCSR of a token pair is the 
number of characters that appear in the same or- 
der in both tokens divided by the length of the 
longer token (Melamed 1995). The common char- 
acters need not be contiguous. The matching 
predicate considers a token pair cognates if their 
LCSR exceeds a certain threshold. The LCSR 
threshold was optimized together with SIMR's 
other parameters, as described in Section 3.7. The 
stop-list of closed-class words made the match- 
ing predicate more accurate, because closed-class 
words are unlikely to have cognates. On the con- 
trary, they often produce spurious matches. Ex- 
amples for French and English include a, an, o n  

and par. 

The second matching predicate was just like 
the first, except that it also evaluated to TRUE 
whenever the input token pair appeared as an en- 
try in a translation lexicon. The translation lexi- 
con was automatically extracted from an MRBD 
(Cousin et al. 1991). 

3.2 Po int  Se lec t ion  

As illustrated in Figure 3, even short sequences of 
TPCs form characteristic patterns. In particular, 
TPCs have the following properties: 



• L i n e a r i t y :  TPCs  tend to line up straight. Sets 
of points with a roughly linear arrangement are 
called chains. 

• C o n s t a n t  S lope :  The slope of a T P C  chain is 
rarely much different from the bitext slope. 

• I n j e c t i v i t y :  No two points in a chain of TPCs  
can have the same x -  or y-co-ordinates. 

SIMR exploits these properties to decide which 
chains in the scatterplot might be T P C  chains. 
The chain recognition heuristic involves two 
threshold parameters:  m a x i m u m  p o i n t  dis-  
p e r s a l  and m a x i m u m  a n g l e  d e v i a t i o n .  Each 
threshold is used to filter candidate chains. First, 
the linearity of each chain is judged by measur- 
ing the root mean squared distance of the chain's 
points from the chain's least-squares line. If  this 
distance exceeds the m a x i m u m  point dispersal 
threshold, the chain is rejected. Second, the an- 
gle of each chain's least-squares line is compared to 
the arctangent of the bitext slope. If the difference 
exceeds the m a x i m u m  angle deviation threshold, 
the chain is rejected. Lastly, chains that  lack the 
injectivity property are rejected. 

3.3 Reduc ing  the  Search Space 

In a region of the scatterplot containing n points, 
there are 2 n possible chains - -  too many  to search 
by brute force. The.proper t ies  of TPCs  listed 
above provide two ways to constrain the search. 

The Linearity property leads to a constraint 
on the chain size. Chains of only a few points are 
unreliable, because they often line up straight by 
coincidence. Chains that  are too big will span too 
long a segment of the TBM to be well approxi- 
mated  by a line. SIMR chooses a fixed chain size 
k, 6 < k < 9. Fixing the chain size at k reduces 
the number  of candidate chains to 

k (n 

Fortypicalvaluesofnandk,  ( n ) k can still 

reach into the millions. The Constant  Slope prop- 
erty suggests another constraint: SIMR should 
consider only chains that  are roughly parallel to 
the main diagonal. Two lines are parallel if the 
perpendicular displacement between them is con- 
stant.  So, if we want to find chains that  are 
roughly parallel to the main diagonal, we should 
look for chains whose points all have roughly 
the same displacement 2 from the main diagonal. 
Points with similar displacement can be grouped 
together by sorting, as illustrated in Figure 4. 
Then, chains that  are most  parallel to the main 

2Displacement can be negative. 
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subsequence 1 ~i m n a i l ~ J  
(points 1 thru 6) a ~  

subsequence 8 
(points 5 thru 10) " " 

Figure 4: The points of correspondence are num- 
bered according to their displacement from the 
main diagonal. The chain most parallel to the 
main diagonal is always one of the contiguous sub- 
sequences of this ordering. For a fixed chain size 
of 6, there are 13 - 6 + 1 = 8 contiguous subse- 
quences in this region of 13 points. Of these 8, 
subsequence 5 is the best chain. 

diagonal will be contiguous subsequences of the 
sorted point sequence. In a region of the scatter- 
plot containing n points, there will be only n - k + l  
such subsequences of length k. Sorting the points 
by their displacement is the most  computat ional ly  
expensive step in the recognition process. 

SIMR's  chain recognition heuristic accepts 
non-monotonic chains. This is a desirable prop- 
erty, because even languages with similar syntax, 
like French and English, have well-known differ- 
ences in word order. For example,  English (ad- 
jective, noun) pairs usually correspond to French 
(noun, adjective) pairs. Such inversions result in 
chains that  contain a pat tern  like points 5 and 9 
in Figure 4. SIMR has no problem accepting the 
inverted points, unlike bitext mapping  algorithms 
that  try to minimize the distance between TPCs.  
To my knowledge, no other bitext mapping  algo- 
r i thm allows non-monotonic map  segments. 

You may wonder how SIMR will fare with lan- 
guages that  are less closely related, which have 
even more word order variation. This is an open 
question, but there is reason to be optimistic. To 
accommodate  language pairs with vastly different 
word order, it may suffice for SIMR to increase the 
max imum point dispersal threshold, relaxing the 
linearity constraint on T P C  chains. 
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Figure 5: Frequent token types cause false points of 
correspondence that line up in rows and columns. 

3.4 Reduc ing  Noise  

The Injectivity property also leads to a heuris- 
tic which reduces the number of candidate chains, 
although the chief aim of this heuristic is to in- 
crease the signal-to-noise ratio in the scatterplot. 
The heuristic was introduced after inspection of 
several scatterplots in bitext spaces revealed a re- 
curring noise pattern.  This noise pat tern is illus- 
t rated in Figure 5. It  consists of correspondence 
points that  line up in rows or columns associated 
with frequent token types. Token types like the 
English article "a" can produce one or more cor- 
respondence points for almost every sentence in 
the opposite text. Since only one of these corre- 
spondence points can be correct, all but one of 
the points in each row and column are noise. I t ' s  
difficult to measure exactly how much noise is gen- 
erated by frequent tokens, and of course the pro- 
portion is different for every bitext. Visual inspec- 
tion of some scatterplots indicated that  frequent 
tokens are often responsible for the lion's share of 
the noise. Reducing this source of noise makes it 
much easier for SIMR to stay on track. 

Other bitext mapping algorithms mitigate 
this source of noise either by assigning lower 
weights to correspondence points associated with 
frequent token types (Church 1993) or by sim- 
ply deleting frequent token types from the bitext 
(Dagan et al. 1993). However, a frequent token 
type can be rare in some parts of the text. In those 
parts, the token type can provide valuable clues to 
correspondence. On the other hand, many tokens 
of a relatively rare type can be concentrated in a 
short segment of the text, resulting in many false 
correspondence points. The varying concentration 
of identical tokens suggests that  more localized 
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Figure 6: Two text segments at the end of Sen- 
fence A were switched during translation, resulting 
in a non-monotonic segment. To interpolate in- 
jective bitext maps, non-monotonic segments must 
be encapsulated in Minimum Enclosing Rectangles 
(MERs). A unique bitext map can then be in- 
terpolated by using the lower left and upper right 
corners of the MER (map M2), instead of using 
the non-monotonic correspondence points (func- 
tion M1). 

noise filters would be more effective. SIMR's  lo- 
calized search strategy provides the perfect vehicle 
for a localized noise filter. 

The filter is based on another threshold pa- 
rameter,  the m a x i m u m  p o i n t  a m b i g u i t y  level  
( M a x P A L ) .  For each point p = (x, y), let X be 
the number of points in column x within the search 
rectangle, and let Y be the number of points in row 
y within the search rectangle. Then, 

ambiguity level of p = X + Y - 2. 

Thus, if p is the only point in its row and col- 
umn, its ambiguity level is zero. SIMR ignores 
points whose ambiguity level exceeds the MaxPAL 
threshold. What  makes this a localized filter is 
that  only points within the search rectangle count 
towards each other 's  ambiguity level. This means 
that  the ambiguity level of a given point can in- 
crease as the search rectangle expands; the set of 
points that  SIMR ignores can change dynamically. 

3.5 Interpolat ion 

A bitext map can be derived from a set of cor- 
respondence points by linear interpolation. The 
only complication is that  linear interpolation is 
not well-defined for non-monotonic sets of points. 
It would be incorrect to simply connect the dots 
left to right, because the resulting function may 
not be one-to-one. To interpolate injeetive bitext 
maps, non-monotonic segments must  be encapsu- 
lated in Minimum Enclosing Rectangles (MERs), 



as shown in Figure 6. A unique bitext map can 
be interpolated by using the lower left and up- 
per right corners of the MER, instead of using the 
non-monotonic correspondence points. 

3 .6  E n h a n c e m e n t s  

There are many  possible enhancements to the al- 
gori thm outlined above. The following subsections 
describe but two of the more interesting extensions 
in the current implementat ion.  

L a r g e  N o n - m o n o t o n i c  S e g m e n t s  SIMR has 
no problem with small non-monotonic segments 
inside chains. However, the expanding rectangle 
search strategy can miss larger non-monotonic seg- 
ments, which cannot fit inside one chain. If a more 
precise map  is desired, these larger non-monotonic 
segments can be easily recovered during a second 
sweep through the bitext space• 

• T P C  ]i 
- - -  SIMR',  /:: . / "  

firstpass J: . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . . . . . . .  =-&- .... /. 
I i • I 

t j  

..... i~s~.g.~i_ii_ii~~!.i i= i ............. 

Figure 7: Segments i and j switched placed dur- 
ing translation. I f  a more precise map is desired, 
these larger non-monotonic segments can be easily 
recovered during a second sweep through the bitext 
space. Any non-monotonic segment of the T BM 
will occupy the intersection of a vertical gap and 
a horizontal gap in the monotonic first-pass map. 

Non-monotonic TBM segments result in a 
characteristic map  pattern,  as a consequence of 
the injectivity of bitext maps.  In Figure 7, the 
vertical range of segment j corresponds to a ver- 
tical gap in SIMR's  first-pass map.  The horizon- 
tal range of segment j corresponds to a horizon- 
tal gap in SIMR's  first-pass map.  Similarly, any 
non-monotonic segment of the TBM will occupy 
the intersection of a vertical gap and a horizon- 
tal gap in the monotonic first-pass map.  Further- 
more, switched segments are almost always adja- 
cent and relatively short. Therefore, to recover 
non-monotonic segments of the TBM, SIMR needs 
only to search gap intersections that  are close to 
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the first-pass map.  There are usually very few 
such intersections that  are also large enough to ac- 
commodate  new chains, so the second-pass search 
requires only a small fraction of the computat ional  
effort of the first pass. 

Loca l  S l o p e  V a r i a t i o n  To ensure that  SIMR 
rejects spurious chains, the m a x i m u m  angle devi- 
ation threshold must  be set low. However, like any 
heuristic filter, this one will reject some perfectly 
valid candidates. The injectivity of bitext maps  
enables a method for recovering some of the re- 
jected valid chains. Valid chains that  are rejected 
by the angle deviation filter sometimes occur be- 
tween two accepted chains, as shown in Figure 8. 
If chains C and D are accepted as valid, then the 

e > maximum angle . mam. 
deviation threshold cllagonal/•..ii ,,. 

I T @ .-'" O 
l ' e ~  ~hain x / 

• • J ~ 2 n d p a s s  
search space 

Figure 8: Chain X is perfectly valid, even though 
it has a highly deviant slope. Such chains can be 
recovered by re-searching regions between accepted 
chains. The slope of the local main diagonal can 
be quite different from the slope of the global main 
diagonal. 

slope of the TBM between the end of Chain C and 
the start  of Chain D must  be much closer to the 
slope of Chain X than to the slope of the main di- 
agonal. Chain X should be accepted. When SIMR 
makes its second-pass search for non-monotonic 
segments, it also searches for sandwiched chains 
in any space between two accepted chains that  is 
large enough to accommodate  another chain. This 
subspace of the bitext space will have its own main 
diagonal. The slope of this local main diagonal can 
be quite different from the slope of the global main 
diagonal. 

Another source of local slope variation is 
"non-linguistic" text, such as white space or ta- 
bles of numbers. Usually, such text is copied "as 
is" during translation, resulting in regions of bitext 
space where the slope of the TBM is exactly 1. 
The problem is that  these regions can be large 
enough to severely skew the slope of the main di- 
agonal. Thus, they can fool SIMR into search- 
ing the whole bitext space for T P C  chains whose 
slope is close to 1, even though most  of the bitext 



Table 1: Comparison of error distributions for SIMR and char_a l ign ,  in characters. 

bitext 

"easy" 
Hansard 

(7123 ref. pts.) 
"hard" 

Hansard 
(2693 ref. pts.) 

algorithm 

char_align 
SIMR 

SIMR with MRBD 
char_align 

SIMR 
SIMR with MRBD 

median 
absolute error 

not reported 
0.49 
0.61 

18 
0.48 
0.60 

99th 
percentile 

200 
50 
49 
200 
55 
44 

root mean 
squared error 

57 
13 
13 
46 
9.8 
8.6 

map  between "linguistic" parts of the bitext has a 
very different slope. Sometimes, the translation of 
non-linguistic text is completely erratic, especially 
where white space is concerned. Not surprisingly, 
SIMR cannot perform well on such text. 

It  should not be difficult to recognize bitext 
sections that  consist of "non-linguistic" text. 
Then, SIMR will be better  able to follow the vari- 
ations in the slope of the TBM. This extension to 
SIMR is next in line. 

3 .7  Evaluation 

The standard method of evaluating bitext map- 
ping algorithms is to compare their output to a 
hand-constructed reference set of TPCs.  Michel 
Simard of CITI  graciously provided me with sev- 
eral such reference sets for French-English bi- 
texts, including the same "easy" and "hard" 
Hansard bitexts that  have been used to evaluate 
other bitext mapping and alignment algorithms in 
the literature (Church 1993, Simard et al. 1992, 
Dagan et al. 1993). A non-Hansard reference set 
was used for SIMR's  development. All of SIMR's 
parameters,  namely the thresholds for max imum 
point dispersal, max imum angle deviation, maxi- 
m u m  point ambiguity, and the LCSR used in the 
matching predicate, as well as the fixed chain size, 
were simultaneously optimized on this data  set us- 
ing simulated annealing (Vidal 1993). Different 
parameter  settings considered by the optimization 
process resulted in different bitext maps for the 
development bitext. Each set of parameter  values 
was scored according to the root mean squared 
error between the resulting bitext map and the 
reference set of TPCs.  The best-scoring set of pa- 
rameter  values was used to evaluate SIMR. 

SIMR was evaluated on the "easy" and "hard" 
Hansard bitexts. Note that  these bitexts are so 
named because one was easier than the other 
for the alignment algorithm that  was first eval- 
uated on them. There is no a priori reason to 
believe that  one or the other will be easier for 
SIMR. Table 1 compares SIMR's error distribu- 
tion on these bitexts with that  of the previous 
front-runner, char._al:i.gn, as reported by Church 
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(1993). SIMR's RMS error is lower by more than 
a factor of 4. SIMR is also much more robust: 
it rarely errs by more than half the length of an 
average sentence. Such robustness has enabled at 
least one new commercial-quality application - -  
automatic  detection of omissions in translations 
(Melamed 1996). This task was impossible until 
now, because it cannot tolerate even a few wild 
errors, such as those produced by an independent 
implementation of char_al:i.gn (Simard 1995). 

Note that  the error between a bitext map  and 
each reference point can be defined as the hori- 
zontal distance, the vertical distance, or the dis- 
tance perpendicular to the main diagonal. The 
latter distance will always be shortest, on aver- 
age. Church (1993) did not specify which metric 
he used. Of the three possibilities, Table 1 con- 
servatively reports the highest error estimates for 
SIMR. The lowest estimates for SIMR without the 
translation lexicon are an RMS error of 6.1 for the 
"easy" bitext and 5.4 for the "hard" bitext. With 
the translation lexicon, the lowest error estimates 
drop to 6.0 for the "easy" bitext and 4.6 for the 
"hard" bitext. 

3 .8  Discussion 

One concern about greedy algorithms is that  if 
they wander off track, they may not be able to 
find their way back. There is no guarantee that  
this will never happen with SIMR. However, there 
is evidence that  it is extremely unlikely. First, 
SIMR can wander off the right track only if there 
is an alternative (wrong) track. The noise re- 
duction heuristics mentioned in Section 3.5 en- 
sure that  very few points of correspondence can 
be generated away from the TBM trace. Those 
points that  are generated are extremely unlikely 
to be sufficiently linear and to have the proper 
slope to fool the chain recognition heuristic. The 
fixed chain size parameter  also plays a role. The 
longer the chain, the less probable it is that  a set 
of false points of correspondence will take on a 
valid-looking arrangement.  

The development bitext used in the simulated 
annealing parameter  optimization contained over 



40000 words. During the optimization, SIMR oc- 
casionally veered off course when the fixed chain 
size was 5 or less. It  rarely got lost with a fixed 
chain size of 6 and never with a fixed chain size of 7 
or more. The opt imal  fixed chain size with respect 
to the RMS error metric was 9 when the transla- 
tion lexicon was used, and 8 when it was not. The 
chances of 8 or 9 false points of correspondence sat- 
isfying the m a x i m u m  point dispersal, max imum 
angle deviation, and m a x i m u m  point ambiguity 
level thresholds are negligible. 

Finally, if SIMR does get lost, the result- 
ing bitext map  will contain telltale discontinuities. 
Such discontinuities can be automatical ly detected 
with high reliability (Melamed 1996). With this 
sanity check in place, manual  verification should 
never be necessary. 

4. A l i g n m e n t  

SIMR has no idea that  words are often used to 
make sentences. I t  just  outputs  a series of cor- 
responding token positions, leaving users free to 
draw their own conclusions about  how the texts '  
larger units correspond. However, many existing 
translators '  tools and machine translation strate- 
gies are based on aligned sentences. Wha t  can 
SIMR do for them? 

There are several papers in the literature 
about  bitext alignment. The algorithms that  
seem to work best rely on the high correlation 
between the lengths of corresponding sentences 
(Brown et al. 1991, Gale & Church 1991). How- 
ever, these algorithms can fumble in bitext sec- 
tions that  contain many  sentences of very similar 
length, like this vote record: 

English French 

Mr. McInnis? 
Yes. 
Mr. Saunders? 
No. 
Mr. Cossitt? 
YeS. 

M. Mclnnis? 
Oui. 
M. Saunders? 
Non. 
M. Cossitt? 
Oui. 

Source: (Chen 1993) 

The only way to ensure a correct alignment in such 
regions is to look at the words. For this reason, 
Chen (1993) adds a statistical translation model 
to the Brown et al. alignment algorithm, and Wu 
(1994) adds a translation lexicon to the Gale & 
Church alignment algorithm. 

A set of points of correspondence leads to 
alignment more directly than a translation model 
or a translation lexicon, because points of corre- 

spondence are a relation between token instances, 
not between token types. Moreover, a set of cor- 
respondence points, supplemented with sentence 
boundary information, expresses s e n t e n c e  cor-  
r e s p o n d e n c e ,  which is a richer representation 
than sentence alignment. Figure 9 illustrates how 
sentence boundaries form a grid over the bitext 
space 3. Each cell in the grid represents the in- 
tersection of two sentences, one from each com- 
ponent text. A point of correspondence inside cell 
(X,y) indicates that  some token in sentence X cor- 
responds with some token in sentence y; i.e. sen- 
tences X and y correspond. Thus, Figure 9 indi- 
cates that  sentence e corresponds with sentences G 
and H. 

In contrast to a correspondence relation, "an 
a l i g n m e n t  is a segmentation of the two texts 
such that  the nth segment of one text  is the 
translation of the nth  segment of the other." 
(Simard et al. 1992) For example, given the to- 
ken correspondences in Figure 9, the segment 
(G, H)  should be aligned with the segment (e, f ) .  
If  sentences ( X i , . . . , X n )  align with sentences 
(y l , . . . ,y ,~) ,  then ( ( X 1 , . . . , X , ~ ) , ( y l , . . . , y , ~ ) )  is 
an a l i g n e d  b lock .  In geometric terms, aligned 
blocks are rectangular regions of the bitext  space, 
such that  the sides of the rectangles coincide with 
sentence boundaries, and such that  no two rectan- 
gles overlap either vertically or horizontally. The 
aligned blocks in Figure 9 are outlined with solid 
lines. 

SIMR's  initial output  has more expressive 
power than the alignment that  can be derived from 
it. One illustration of this difference is tha t  sen- 
tence correspondence can express inversions, but 
sentence alignment cannot. Inversions occur sur- 
prisingly often in real bitexts, even for sentence- 
size text units. Figure 9 provides another illustra- 
tion. If, instead of the point in cell (I-I,e), there 
was a point in cell (G,f),  the correct alignment 
for that  region would still be ((G, g ) ,  (e, f ) ) .  If  
there were points of correspondence in both (HI,e) 
and (G,f), the correct alignment would still be the 
same. Yet, the three cases are clearly different. If  
a lexicographer wanted to see a word in sentence G 
in its bilingual context, it would be useful to know 
whether sentence f is relevant. 

Converting from sentence correspondence to 
sentence alignment is of dubious practical value. 
Nevertheless, in order to facilitate comparison of 
the geometric approach with other alignment al- 
gorithms, I have designed the G e o m e t r i c  Sen-  
t e n c e  A l i g n m e n t  ( G S A )  algorithm to reduce 

3The techniques presented in this section can be 
applied equally well to paragraphs, lists of items, or 
any other text units for which boundary information 
is available. 
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Figure 9: Sentence boundaries form a grid over the bitext space. Each cell in the grid represents the product 
of two sentences, one from each component text. A point of correspondence inside cell (X, y) indicates that 
some token in sentence X corresponds with some token in sentence y; i.e. the sentences X and y correspond. 
So, for example, sentence E corresponds with sentence d. The aligned blocks are outlined with solid lines. 

sets of correspondence points to alignments. The 
algorithm's first step is to perform a transitive clo- 
sure over the input correspondence relation. For 
instance, if the input contains (G,e), (H,e), and 
(H,f), then GSA adds the pairing (G,f). Next, 
GSA forces all segments to be contiguous: If sen- 
tence Y corresponds with sentences x and z, but 
not y, the pairing (Y,y) is added. In geomet- 
ric terms, these two operations arrange all cells 
that contain points of correspondence into non- 
overlapping rectangles, while adding as few cells 
as possible. The result is an alignment relation. 

A complete set of TPCs, together with appro- 
priate boundary information, guarantees a perfect 
alignment. Alas, the points of correspondence pos- 
tulated by SIMR are neither complete nor noise- 
free. Fortunately, the noise in SIMR's output 
causes alignment errors in very predictable ways. 
GSA employs a couple of backing-off heuristics to 
elimninate most of the errors. 

SIMR makes errors of omission and errors of 
commission. Typical errors of commission are 
stray points of correspondence like the one in cell 
(H, e) in Figure 9. This point indicates that 
(G, H) and (e, f )  should form a 2x2 aligned block, 
whereas the lengths of the component sentences 
suggest that a pair of l x l  blocks is more likely. In 
a separate development bitext, I have found that 
SIMR is usually wrong in these cases. To com- 
bat such errors, GSA re-aligns any aligned block 
that is not lx l ,  using the Gale & Church length- 
based alignment algorithm (Gale & Church 1991, 
Simard 1995). Whenever the component sentence 
lengths suggest a more fine-grained alignment, 
SIMR's output is not trusted. 

Typical errors of omission are illustrated in 
Figure 9 by the complete absence of correspon- 
dence points between sentences ( B , C , D )  and 
(b, c). This block of sentences is sandwiched be- 
tween aligned blocks. It is highly likely that  at 
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Table 2: Comparison of alignment algorithms. One error is counted for each aligned block in the reference 
alignment that is missing from the test alignment. 

errors, given errors, not given 
bitext algorithm hard constraints hard constraints 

"easy" 
Hansard 

(n = 7123) 

"hard" 
Hansard 

(n = 2693) 

Gale & Church (1991) 
Simard et al. (1992) 

SIMR/GSA 
SIMR/GSA with MRBD 

Gale & Church (1991) 
Simard et al. (1992) 

SIMR/GSA 
SIMR/GSA with MRBD 

not applicable 
114 (1.6%) 
104 (1.5%) 
80 (1.1%) 

not applicable 
50 (1.9%) 
50 (1.9%) 
45 (:.7%) 

128 (1.8%) 
171 (2.4%) 
:15 (:.6%) 
90 (1.3%) 
80 (3.0%) 
102 (3.8%) 
61 (2.3%) 
48 (1.8%) 

least some of these sentences are mutual transla- 
tions, despite SIMR's failure to find any points 
of correspondence between them. Therefore, GSA 
treats all empty blocks just like aligned blocks. If 
an empty block is not l x l ,  GSA re-aligns it using a 
length-based algorithm, just like it would re-align 
any other many-to-many aligned block. 

The most difficult problem occurs when an er- 
ror of omission occurs next to an error of commis- 
sion, like in blocks ((), (h)) and ((J, K), (i)). If the 
point in cell (J,i) should really be in cell (J,h), re- 
alignment inside the erroneous blocks would not 
solve the problem. A naive solution is to merge 
these blocks and then to re-align them using a 
length-based method. Unfortunately, this kind 
of alignment pattern, i.e. 0xl followed by 2xl, 
is surprisingly often correct. Length-based meth- 
ods assign very low probabilities to such pattern 
sequences and usually get them wrong. There- 
fore, GSA also considers the confidence level with 
which the length-based alignment algorithm re- 
ports its re-alignment. If this confidence level is 
sufficiently high, GSA accepts the length-based 
re-alignment; otherwise, the alignment indicated 
by SIMR's points of correspondence is retained. 
The minimum confidence at which GSA trusts the 
length-based re-alignment is a GSA parameter, 
which has been optimized on a separate develop- 
ment bitext. 

Due to the paucity of development resources 
at my disposal, GSA's backing-off heuristics are 
somewhat ad hoc. Even so, GSA performs at least 
as well as other alignment algorithms, and usu- 
ally better. Table 2 compares SIMR's accuracy 
on the "easy" and "hard" reference bitexts with 
the accuracy of two other alignment algorithms, 
as reported by Simard et al. (1992). The error 
metric counts one error for each aligned block in 
the reference alignment that  is missing from the 
test alignment. The hard constraints correspond 
to paragraph boundaries. 

More important  than GSA's current perfor- 
mance is GSA's potential performance. With a 
bigger development bitext, more effective backing- 
off heuristics can be developed. More precise input 
would also make a big difference: GSA's perfor- 
mance will improve whenever SIMR's performance 
improves. 

Although GSA sometimes backs off to a 
quadratic-time alignment algorithm, in practice 
its running time is linear in the number of in- 
put sentences. The points of correspondence in 
SIMR's output  are sufficiently dense and precise 
that  GSA backs off only for very small aligned 
blocks. When the translation lexicon was used 
in SIMR's matching predicate, the largest aligned 
block that  needed to be re-aligned in the "easy" 
and "hard" test bitexts was 5x5. Without  the 
translation lexicon, the largest re-aligned block 
was 7x7. So, GSA's running time is O(kn), where 
n is the number of input sentences and k is a small 
constant proportional to the size of the largest re- 
aligned block. 

Admittedly, GSA is only useful when a good 
bitext map is available. In such cases, there are 
three reasons to favor GSA over other options 
for alignment: One, it is simply more accurate. 
Two, its running time is linear in the number 
of sentences, faster than dynamic programming 
methods. Therefore, three, it is not necessary 
to manually segment the component texts into 
smaller units before input to GSA. GSA works 
almost as well without such "hard constraints." 
Hard constraints are necessary for alignment algo- 
rithms that use dynamic programming, in order 
to maintain an acceptable running time on longer 
bitexts(Gale & Church 1991, Simard et al. 1992). 

SIMR produced bitext maps for 200 mega- 
bytes of the Canadian Hansards. GSA converted 
these maps into alignments. The Linguistic Data 
Consortium plans to publish both the maps and 
the alignments in the near future. 
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5. C o n c l u s i o n  

The Smooth Injective Map Recognizer (SIMR) has 
five advantages over previous bitext mapping al- 
gorithms. First, it lowers average errors by more 
than a factor of 4. Second, it avoids very large 
errors, improving robustness to a level that en- 
ables new commercial-quality applications. Third, 
it does not require large amounts of computer 
memory to run. Fourth, it accepts non-monotonic 
segments to account for inversions and word or- 
der differences. Fifth, its output can be converted 
quickly and easily into an accurate sentence align- 
ment. 

There are many possible extensions to this 
work. One interesting observation is that aligned 
sentences can be used to induce translation lex- 
icons, and translation lexicons are an important 
information source for bitext mapping and align- 
ment (Kay & RSscheisen 1993, Chen 1993). I 
plan to explore an interactive loop between SIMR, 
GSA and my algorithm for inducing translation 
lexicons (Melamed 1995). 

It would also be interesting to experiment 
with SIMR and GSA on language pairs that are 
not as closely related as English and French. The 
only technique for mapping between more dis- 
parate languages that has been rigorously evalu- 
ated (Wu 1994) relies on length correlations sprin- 
kled with some lexical information. From this 
point of view, Wu's technique is similar to the one 
used by Simard et al. (1992). So, I am eager to see 
whether the geometric approach will compare as 
favorably to Wu's results on English and Chinese 
as it has to Simard et al.'s results on English and 
French. 
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