
An Algorithm for Generating Quantifiers

Norman Creaney

Faculty o f lnformatics
University of Ulster at Coleraine

N Ireland
BT52 1SA

E-mail." n. creaney@ulst, ac. uk
Tel: +44 (0)1265 324502
Fax: +44 (0)1265 324916

Abstract:

Quantifiers, and their associated scoping phenomena are ubiquitous in English and other natural
languages, and a great deal of attention has been paid to their treatment in the context of natural
language analysis. Rather less attention, however, has been paid to their treatment in the context of
language generation. This paper describes an algorithm for generating quantifiers in English
sentences which describe small models containing collections of individuals which are inter-related
in various ways. The input to the algorithm is, i) a model represented as a collection of facts and ii)
an abstract description of the target sentence with gaps where the quantifiers should be.

Keywords: lexical choice, realisation, quantifiers

121

An Algorithm for Generating Quantifiers

Quantifiers, and their associated scoping
phenomena are ubiquitous in English and
other natural languages, and a great deal of
attention has been paid to their treatment in
the context of natural language analysis
(Alshawi 1990, Creaney 1995, Grosz et al.
1987, Hobbs and Shieber 1987, Park 1995,
Saint-Dizier 1984). Rather less attention,
however, has been paid to their treatment in
the context of language generation. This paper
describes an algorithm for generating
quantifiers in English sentences which
describe small models containing collections
of individuals which are inter-related in
various ways.

A model is represented as a collection of facts
like the following:

rep(rl). sample(sl).
rep(r2). sample(s2).
rep(r3). sample(s3).
rep(r4).

saw(rl, sl).
saw(r2, sl).
saw(r2, s2).
saw(r3, s2).
saw(r3, s3).
saw(r4, sl).
saw(r4, s2).
saw(r4, s3).

In model (1) there are four representatives and
three samples and some of the representatives
saw some of the samples. The algorithm
generates suitable quantifiers to complete
sentences of the form:

QR representative(s) saw Qs sample(s)

where QR and Qs can be arbitrary quantifiers
like; some, two, all, both, one o f the, most, etc.
The algorithm also handles models containing
more relationships than model (I) to generate
sentences of the form:

QR representative(s) o f Q c company(s)
saw Qs sample(s)

QR representative(s) saw Qs sample(s) o f
Qp product(s)

QR representative(s) of Qc company(s)
saw Qs sample(s) of Qp product(s)

One of the most striking things about the
problem is that there are generally a great
many sentences which provide reasonable
descriptions of any given model. For example,
the following are all acceptable for model (1).

2 Every representative saw a sample

3 Every representative saw at least one
sample

4 Most representatives saw at least two
samples

5 A representative saw every sample

6 At least one representative saw every
sample

7 At least two representatives saw most
samples

It turns out that there are three distinct sources
of this variation and they correspond to three
different kinds of choices which are made in
the generation algorithm. They are:

o quantifier scoping choices
o choice of focus sets
o choice of individual quantifiers constrained

by the above two choices

A great deal has been written about the
quantifier scoping problem for natural
language analysis (Hobbs & Shieber 1987)
and much of this is applicable to the
generation problem in the sense that any
particular description must assume some
particular quantifier scoping arrangement. For
example, sentence (2) assumes that "Every
representative" has wide scope while sentence
(5) assumes that "every sample" has wide
scope, and the sentences are only satisfied in
the model under these assumptions. In fact
sentences (2), (3) and (4) all assume wide
scope for "representative" while sentences
(5), (6) and (7) all assume wide scope for
"sample". The gencration algorithm, of
necessity, incorporates quantifier scoping.

122

The concept of a focus set has no correlate in
the language analysis literature although it is
similar to what Barwise and Cooper (Barwise
and Cooper 1981) call a witness set. It has to
do with choosing some particular subset of the
model on which to base the description.
Sentence (2) talks about all three
representatives while sentence (4) talks only
about the subset {r2,r3,r4}. This subset stands
in the realtion most to the entire set of
representatives {rl,r2,r3,r4} and is the focus
set for R in sentence (4). The concept of a
focus set will be made more precise below
where dependency functions are discussed.

saw(QI(R, rep(R)), Q2(S, sample(S)))

saw(Q3(R, rep(R) ^ of(R, Q4(C,com(C))),
Qs(S, sample(S)))

and the purpose of the algorithm is to assign
values to the Oi's given some suitable model.
It works by processing the PAS recursively
and non-deterministically selecting quantifier
scopings and focus sets at each level.
Quantifiers are then generated based on the
cosen focus set.

Inputs to the algorithm

The inputs to the algorithm are:

a model like (1)
a predicate argument structure for the
target sentence

A predicate argument structure (PAS) is
essentially an unscoped logical form of the
form taken as input to Hobs and Shieber's
algorithm (Hobbs & Shieber 1987). It makes
explicit the relationships between predicates
and there arguments but does not express any
quantifier scope relationships. Sentence (2)
has the following PAS:

saw(every(R,rep(R)), a(S,sample(S)))

Quantifier scoping

Since the particular scoping framework
underlying the generation algorithm is novel a
brief explanation is appropriate. The orthodox
approach to quantifier scoping is embodied in
Hobbs and Sheiber's algorithm and it permits
all permutations of quantifiers such that there
are no unbound variables in the resulting
logical form. For example, Hobbs and
Shieber's algorithm produces the scopings
(8b-f) for sentence (8a)t:

8 a Every representative of a company saw
some samples

b R > C > S
c C > R > S
d S > R > C
e C > S > R
f S > C > R

and sentence (8a) has the following one.

saw(every(R, rep(R)Aof(R,a(C,com(C))),
some(S, sample(S)))

Each variable in a PAS has a quantifier and a
restriction which restricts the values which it
may take.

O

O

S's restriction is sample(S) in both cases
R's restriction is rep(R) in the first PAS
and rep(R)Aof(R,a(C,company(C)) in the
second

Since the algorithm generates quantifiers its
input PASs are not exactly like these. Instead
they have gaps where quantifiers should be:

where R > C > S indicates that "Every
representative" outscopes "a company" which
in turn outscopes "some samples". The
missing permutation, R > S > C, is not
permitted because it violates what has become
known as the unbound variable constraint.

The scoping framework which underlies the
generation algorithm recognises fewer
scopings than (8). The relative scope of two
quantifiers is only considered for variables

We adopt the convention of naming variables
with the first letter of the head noun with which
they are associated (R=representative, C=company,
S=sample) and using the symbol '>' to denote
relative scope.

123

which are arguments to the same predicate.
For example, R must be scoped relative to C
because they are both arguments to the
predicate of The possibilities are R > C and t3
> R. Similarly, R and S are arguments to the
predicate saw and may be scoped either R > S
or S > R. The relative scoping of C and S is
never considered directly because they do not
participate directly in any single predication in
the sentence. They may however end up with
a relative scoping as a result of taking the
transitive closure of other scoping
relationships. For example, if it is decided that
C > R and R > S, then clearly, since scope is
transitive, C > R. In this framework the
following scopings are allowed for (8a).

9 a R > S , R > C
b S > R > C
c C > R > S
d S > R , C > R

It is clear from (8) and (9) that this framework
undergenerates in comparison with Hobbs and
Shieber's. However, in the context of
language generation, undergeneration is not
necessarily a serious problem, provided that
there is the ability to adequately describe any
model. In fact there is an argument to be made
in favour o f a scoping framework which
undergenerates with respect to Hobbs and
Shieber's as a general approach to quantifier
scoping (Park 1995). This is the subject of a
future paper.

Dependency functions, partitions
and focus sets

Each variable in a PAS has a candidate set
which is defined by its restriction and the
model under consideration.

Definition 1: candidate set
A variables candidate set is the set of
individuals from the model which satisfy the
variables restriction.

For the PAS:

saw(every(R,rep(R)), a(S,sample(S)))

and model (1), R's candidate set is
{rl,r2,r3,r4} and S's is {sl,s2,s3}.

When we say that "Every representative" has
wide scope we are saying that there is a
function which maps R's candidate set onto
the power set of S 's candidate set. This
dependencyffunction is computed from model
(1) and is exhaustively listed in (lO) below.

10 saw: {r l ,r2,r3,r4} ~ power({sl,s2,s3})
rl ~ { s l }
r2 ~ { s l , s2 }
r3 --~ { s2, s3 }
r4 ~ { s l , s 2 , s3 }

Alternatively, i fS is given wide scope the
following dependency function is computed.

11 saw: {s l ,s2,s3} - , power({rl,r2,r3,r4})
s l --~ { r l , r2, r4}
s2 --~ { r2, r3, r4 }
s3 ~ {r3, r4 }

Focus sets were discussed briefly above and
are made more precise now in the context of
dependency function partitions.

Any dependency function can be partitioned
by choosing a arbitrary subset of the mappings
it contains as its focus, the remainder being its
complement. Of course, the domains and
ranges of these sub-functions are
appropriately adjusted.

The partitions (12a-c) are among the possible
partitions of dependency function (I 0).

12 a focus: saw: { r l } ~ power ({ s l })
r l -+ { s l }

compt: saw: {r2,r3,r4}
power({sl ,s2,s3})

r2 ~ { s l , s2 }
r3 ~ {s2, s3 }
r4 -~ { s l , s2, s3 }

focus: saw: {r2,r3} --~ power({sl,s2,s3})
r2 --~ { s l , s2 }
r3 --~ { s2, s3 }

compt: saw: {r l , r4} ~ power({sl,s2,s3})
rl ~ { s l }
r4 --~ { s l , s2, s3 }

124

focus:saw:{r2,r3,r4} --~ power({sl ,s2,s3})
r2 --~ { s l , s 2 }
r3 ~ {s2, s3}
r4 ~ { s l , s2, s3}

The mapping from partitioned dependency
f,mction to quantifiers is non-deterministic as
(13) shows. For instance, partition (12b)
gives, at least, the three sentences (13bi,ii,iii).

compt: saw: { r l } ~ power({sl})
rl -~ { s l }

Definition 2: focus set
The focus set for a variable, given a
particular partition is either:
o the domain o f the partition's focus
o the union of the range o f the partition's

focus
depending on the variable o f interest.

Not all sentences provide equally good
descriptions of the model but they are all true
in it. For example, (13ai) is true in (1),
assuming "a" means at least one, but is not
very informative. Bigger focus sets tend to
give more information and sound more natural
however the generation algorithm is
concerned only with presenting alternatives
and not with selecting between them.

For example, (12a-c) define the following
candidate sets for R and S.

{ r l } { s l }
{r2, r3} { s l , s2, s3}
{ r2, r3, r4 } { s l , s2, s3 }

It is useful to note that a variable's candidate
set is related to an unpartititioned dependency
function in exactly the same way that its focus
set is related to the focus of the partitioned
function. These relationships are illustrated in
appendix 1.

Individual quantifiers are selected for
generation on the basis of dependency
function partitions. For example, the
descriptions (13a-c) are licensed by the
partitions (12a-c) respectively.

13a i A representative saw a sample

ii Exactly one representative saw
exactly one sample

III

At least hal[the representatives saw
exactly two samples

Exactly two representatives saw
exactly two samples

Two. representatives saw most
samples

Exactly three representatives saw at
least twq samples

Three representatives saw some
samples

Generating quantifiers

The process of generating quantifiers takes
place after a scoping has been chosen and a
dependency function has been constructed and
partitioned, so that all decisions are made in
the context of a particular partitioning of a
particular dependency function.

Generation consists of going through the list
of all possible quantifiers and checking
whether or not each one is consistent with the
appropriate variable in the current dependency
function partition. Those which are consistent
are then generated and those which are
inconsistent are rejected. To check the
consistency of a particular quantifier with a
particular variable it is first necessary to
compute the variable's candidate set, focus
set, and focus maximum and focus minimum.

Definition 3: Focus maximum and minimum
For a variable with wide scope the focus
maximum (Fmax) and focus minimum
(Fmin) are the same. They are simply the
size o f the focus set or, equivalently, the
number o f mappings in the focus of the
dependency function.

e.g. R in (12a): Fmax=Fmin= I{r l } l = 1
R in (12c): Fmax=Fmin= I {r2,r3,r4} I = 3

For a variable with narrow scope the focus
maximum (Fmax) is equal to the size of the

125

biggest member o f the range o f the focus of
the dependency function.

e.g. S in (12a): Fmax = max(l {s l } i) = 1
S in (12c): Fmax=
max(I {sl ,s2} I, I {s2,s3}], I{sl ,s2,s3} I)

=3

The focus minimum is defined along the
same lines as he focus maximum except that
the minimum set size is taken.

e.g. S in (12a): Fmin= min([{s l } l)= 1
S in (12c): Fmin=
min(I {s1,s2}l, I {s2,s3}l, I {sl,s2,s3}l)

=2

q_inc(1,_, [a]).
q_inc(1,_, [somesing]).
q_inc(1,_, [at, least,one]).
q_inc(2, _, [at, least,two]).

q_inc(N, _, [some_plur]) :- N > 1.
q_inc(N, M, [most]) :- M < 2*N.

q_inc(1, 1, [the]).
q_inc(2, 2, [both]).
q_inc(3, 3, [all,three]).
q_inc(N, N, [all]).
q_inc(N, N, [each]).
q_inc(N, N, [every]).

For R in (12a) the appropriate call is therefore:

The checking procedure varies according to
the type of quantifier under consideration
where quantifiers are classified as one of three
types monotone increasing, monotone
decreasing or cardinal (Barwise and Cooper
1981).

o Monotone increasing quantifiers are those
with an at least N interpretation. They
include; a, some_sing, some_plur, the,
both, many, at least four

o Monotone decreasing quantifiers are ones
with an at most N interpretation. They
include; no, few, at most three, less than
three quarters

o Cardinal quantifiers are of the form exactly
N

?- q_inc(1, 4, QR).

which returns the following quantifiers: a,
some_sing, at least one. Similarly, for 9 in
(12a) the appropriate call is:

?- q_inc(1, 3, QS).

which returns the same set ofquantifiers.
Hence sentence (13ai) is generated, as is:

Some representatives saw _a sample
At least one representative saw a sample
A representative saw some samples

and other similar sentences formed by
selecting from the above quantifiers.

The check for monotone increasing quantifiers
is simplest. The acceptability of each
quantifier is as defined by a call to the
following Prolog goal:

?- q_inc(Fmin, Nc, QUANT).

For a monotone decreasing quantifier the
check depends on whether it is in wide scope
position or narrow scope position. In narrow
scope position the check is similar to the one
for monotone increasing quantifiers except
that:

where; Fmin = the focus minimum, Nc =
I candidate set], and the q_inc/3 relation is
defined along the fol lowing lines.

14 % q_inc(+N1, +N2, ?Q) defines Q as
% - "at least N1 out of a possible N2"
% e.g. "a man" means
% - at least 1 man out of any number
% "some men" means
% - at least 2 men out of any number
% "both men" means
% - at least 2 men out of a possible 2

o a different collection of quantifiers is
checked - the monotone decreasing ones

o the focus maximum is input rather than the
focus minimum.

?- q_dec(Fmax, Nc, QUANT).

where; Fmax = the focus maximum, Nc =
I candidate set[, and the q_dec/3 relation is
defined along the fol lowing lines.

126

15 % q_dec(+N1, +N2, ?Q) defines Q as
% - "at most N1 out of a possible N2"
% e.g. "no man" means
% - at most 0 men out of any number
% "few men" means
% - at most half of all the men
% "neither man" means
% - at most 0 men out of 2

q_dec(0, _, [no]).
q_dec(2, _, [at, most, two]).

q_dec(N, M, [few]) :- M < 2*N.

q_dec(0, 2, [neither]).

The check for monotone decreasing
quantifiers in wide scope position is a little bit
trickier. For example, to check the
consistency of the quantifier at most two in
"At most two representatives saw a sample",

assuming R > S, the following checks need to
be made.

O There must be a set of at most two of R's
who may or may not have seen a sample.
This entails checking that R's focus set
contains exactly two members.
All other R's outside this set must certainly
not have seen a sample. This entails
checking the complement of the
dependency function to make sure that the
quantifier a fails to be consistent with the
variable S.

These checks are carried by calls to q_dec/3
an q_inc/3 with appropriate input values.

The check for cardinal quantifiers is defined
in terms of two sub checks: one for a
monotone increasing quantifier and one for a
monotone decreasing. This follows from the
observation that exactly N meant the same as
(at least N)A(at most N).

Embedded quantifiers

The preceding discussion concentrated on
simp!e linguistic structures like (2-7) which
contain one main verb and noun phrases with
no recursive structure. The processing of a
more complex structure like:

16 saw(QR(R, rep(R) ^ of(R, Qc(C,com(C))),
Qs(S, sample(S)))

is done by breaking it down into sub-
structures (17) which are processed almost
independently.

17 a saw(QR(R), Qs(S, sample(S)))
b of(QR,(R, rep(R)), Qc(C, com(C)))

The variable R is assigned the quantifier OR in
(1 7a) and the quantifier OR, in (1 7b) but
clearly only one of these will ultimately be
generated and some special treatment is
required. Thes are called R's outer and inner
quantifiers respectively. PAS (17b) is
processed first. A scoping is chosen for R and
C and a dependency function is constructed in
the normal way but when it comes to
partitioning the function and generating a
quantifier for C some care must be taken.
Some choices of partition and quantifier must
be excluded. What is required is that the
resulting focus set for R is the set of all
representatives who satisfy restriction (17b)
under the chosen partition and quantifier.
Consider the following dependency function
and associated partition.

18a of: {r l ,r2,r3} ~ power({cl,c2,c3})
r l --~ { c l }
r2 --~ { c 2 }
r3 --~ { c 3 }

b focus: of: {r l , r2} ~ power({cl,c2})
r l ~ { c l }
r2 ~ { c 2 }

compt: of: {r3} ~ power({c3})
r3 ~ { b 3 }

Based on the focus in (18b) the quantifier
exactly one might be generated for C. The
corresponding candidate set for R is {rl,r2} but
this is not the set of all representatives who
satisfy the restriction since r3 also satisfies it.
It is to avoid this anomaly that the following
constraint on the acceptability of dependency
function partitions in this context.

127

19 If variable R is in wide scope position in
(17b) then QR' must be of the form exactly
N but is not generated in the final output.

Constraint (19) restricts the range of
acceptable partitions by restricting the range
of acceptable inner quantifiers for R. It also
specifies R's outer quantifier as the one which
is to be finally generated. It guarantees that
R's focus set is maximal in the sense that it
contains all possible R's which satisfy the
restriction and avoids the above anomoly by
failing to allow partition (18b). A parallel but
different constraint is applied whenever R is
in narrow scope position.

20 If variable R is in narrow scope position in
(17b) then QR must be the quantifier V but
is not generated in the final output.

The a l g o r i t h m

The overall strategy is to process a PAS
recursively, assigning quantifiers to the most
deeply nested structures first. As a variable's
restriction is processed the resulting focus set
is passed back up to act as the candidate set
for the same variable in the embedding
structure. An inner quantifier is also returned
together with a flag which indicates scoping
choices within the restriction. The algorithm
is as follows, where the choose construct
indicates non-determinism.

21 to process_PAS p(Qx(X,RX),Qy(Y,RY))
process_RES RX; process_RES RY;
% returned by calls to process_RES:
% Xs, Ys: the candidate sets forX&Y
% Qx', Qy': the innerquants forX&Y
% ScpX, Scp Y: = '>' if head variable
% is given wide scope within restriction,
% '<' if it has narrow scope or 'nil' if there
% are no other variables within the rest'n
choose a scoping for X and Y;
construct the dependency function;
choose a partition;
choose outer quantifiers Qx" and Qy";
% must be consistent with consts. 19&20
if ScpX = > or ScpX = nil then Qx := Qx"

else Qx := Qx';
if ScpY = > or ScpX = nil then Qy := Qy"

else Qy := Qy';
end process_PAS;

to process_RES RX % X is head of phrase
% this procedure returns: Xs, Qx & ScpX
case 1: RX = p(Qx(X,RX),Qy(Y,RY))
% i.e. RX contains an embedded NP

process_RES RY; % returns Ys Qy' ScpY
Xs := { X: RX };
choose a scoping for X and Y;
% and so assign a value to ScpX
construct a dependency function;
choose a partition;
choose quantifiers Qx and Qy";
% must be consistent with constraints
% 19&20 and ScpX & ScpY

case 2: RX = p(X)
% i.e. RX contains no embedded structure

Xs := { X: p(X) }; Qx := nil; ScpX := nil;
end process_RES;

An example

Consider the following model:

rep(rl). of(r l , cl). saw(rl, s l).
rep(r2). of(r2, c2). saw(rl, s2).
rep(r3). saw(r2, sl).
rep(r4). samp(sl). saw(r2, s2).

samp(s2). saw(r3, s l).
corn(cl). saw(r4, s2).
corn(c2).

and the target PAS (16). According to
process_PAS the following restrictions must
be processed first.

22 a of(QR(R,rep(R)), Qc(C,com(C)))
b samp(S)

Starting with (22a):

candidate set R = { r l , r2, r3, r4 }
candidate set C = { c l , c2 }
choose scoping R > C

the following dependency function is
constructed.

23 of: {rl,r2,r3,r4} --~ power'({cl ,c2})
rl ~ { c l }
r2 ~ { c 2 }
r3 ~ { }
r4 --~ { }

The following partition is chosen.

128

24 focus: of: {r l , r2} ~ power({cl,c2})
rl ~ { c l }
r2 ~ { .c2}

compt: of: {r3,r4} ~ power({})
r3 ~ { }
r4 --, { }

The quantifier a is chosen for C and the
candidate set {rl ,r22} is returned.

Processing (22b) is straightforward and
consists of returning the value {sl,s2}, the set
of all samples. Now both restrictions have
been processed and PAS (16) is processed
with the candidate sets {rl ,r2} and {sa ,s2}.

candidate set R = { r l , r2 }
candidate set S = { s l , s2 }
choose scoping R > S

The following dependency function is
constructed.

25 saw: {r l ,r2} ~ power({s l ,s2})
rl ~ { s l , s 2 }
r2 ~ { s l , s 2 }

and the following partition is chosen.

26 focus: saw: {r l ,r2} ~ power({s l ,s2})
rl ~ { s l , s2 }
r2 ~ { s l , s2 }

compt: saw: { } ~ power({ })

The quantifiers every and both are now chosen
for R and S respectively giving the following
sentence.

27 Ever~ representative of _a company saw
both samples

Of course different scoping and partitioning
choices may have generated different
quantifiers. Those in (27) are based on the
scoping choices R > C and R > S with the
partition choice shown in (26).

Conclusion

An algorithm has been described for
generating quantifiers in English sentences

which describe small models containing
collections of individuals which are inter-
related in various ways.

The algorithm performs a great deal of search
with three levels of non-determinism
corresponding to.

o quantifier scoping choices
o choice of focus sets / dependency function

partitions
o choice of individual quantifiers constrained

by the above two choices

This is not necessarily a problem in the
context of language generation where only
one solution is sought.

An obvious improvement to the algorithm
would be to generate a preferred sentence or
to rank the outputs as to how well they
describe the model. We are currently looking
at how this might be done by incorporating
something like the preference heuristics that
have been used successfully to select
quantifier scopings in natural language
analysis (Grosz et al 1987). After the choose
scoping step in the algorithm quantifiers can
be proposed which are preferred in the given
scoping position. These proposed quantifiers
are then checked first by q_inc/3 and q_dec/3.
The details of this have not yet been worked
out.

The description given of the algorithm is
based on binary predicates for the sake of
brevity and clarity but the generalisation to
predicates with three or more arguments is not
difficult. For example, sentences of the
following form can be generated:

28 Every boy gave most girls a kiss

where there is a different kiss for each
<boy,girl> pair. The resulting dependency
functions are, however, much bigger, and
consequently the search space is also.

It is well documented (Webber 1978, Park
1995) that some plural noun phrases are
capable of collective interpretations which are
not sensitive to quantifer scoping. For

129

example, the sentence "'Three men lifted two
boxes" has an interpretation in which three
men combined their efforts in a single act of

lifting two boxes. The algorithm does not
deal with collective interpretations like this.

References

Alshawi, H, (1990), "Resolving Quasi Logical Forms.", Computational Linguistics, 16, 3.

Barwise, J, R Cooper, (1981), Generalized Quantifiers andNatural Language, Linguistics and
Philosophy, 4, 159-219.

Creaney, N, (1995), Implementing Scope and Dependency Constrains in a Typed Attribute Logic,
Proceedings of 5th International Workshop on Natural Language Understanding and Logic
Programming, Lisbon.

Grosz, B J, DE Appelt, PA Martin, and FCN Pereira, (1987), TEAM. An Experiment in the Design of
Transportable Natural-Language Interfaces, Artificilal Intelligence, 32, 173-243.

Hobbs, JR, SM Shieber, (1987), An Algorithm for Generating Quantifier Scopings, Computational
Linguistics, Voi.3, No.l, 47-63.

Park, J, (1995), Quantifier Scope and Constituency, Proceedings ACL-95.

Saint-Dizier, P, (1984). Handling Quantifier Scoping Ambiguities in a Semantic Representation of
Natural Language Sentences. In Dahl, V. and Saint-Dizier, P. (eds.). Proc. I st Int. Workshop on
Natural Language Understanding and Logic Programming, (1984). North-Holland.

Webber, BL, (1978), A Formal Approach to Discourse Anaphora, BBN report no. 3761, Cambridge,
MA: Bolt Beranek and Newman Inc.

Appendix 1: terminology diagram

Candidate sets for R and C

Whole dependency
function

One possible]
partition -focus and

complement

~ power(,
{ cl , c2 }

r2 ~ { c 2 }
r3 ~ { c 3 }

cl, c2, c3 }))

. ~ - ~ power((
cl , c2 }

{ c 2 }

of: { r3 } ~ power({ c3 } ~", x
r3 ~ { b 3 }

ocus sets for R and C
• Focus maximum (R) = 2

Focus minimum (R) = 2
Focus maximum (C) = 2
Focus minimum (C) = 1

130

