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Abstract: 

Quantifiers, and their associated scoping phenomena are ubiquitous in English and other natural 
languages, and a great deal of  attention has been paid to their treatment in the context of  natural 
language analysis. Rather less attention, however, has been paid to their treatment in the context of  
language generation. This paper describes an algorithm for generating quantifiers in English 
sentences which describe small models containing collections of  individuals which are inter-related 
in various ways. The input to the algorithm is, i) a model represented as a collection of facts and ii) 
an abstract description of  the target sentence with gaps where the quantifiers should be. 
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An Algorithm for Generating Quantifiers 

Quantifiers, and their associated scoping 
phenomena are ubiquitous in English and 
other natural languages, and a great deal of  
attention has been paid to their treatment in 
the context of  natural language analysis 
(Alshawi 1990, Creaney 1995, Grosz et al. 
1987, Hobbs and Shieber 1987, Park 1995, 
Saint-Dizier 1984). Rather less attention, 
however, has been paid to their treatment in 
the context of  language generation. This paper 
describes an algorithm for generating 
quantifiers in English sentences which 
describe small models containing collections 
of individuals which are inter-related in 
various ways. 

A model is represented as a collection of facts 
like the following: 

rep( rl ). sample( sl  ). 
rep( r2 ). sample( s2 ). 
rep( r3 ). sample( s3 ). 
rep( r4 ). 

saw( rl, sl  ). 
saw( r2, sl ). 
saw( r2, s2 ). 
saw( r3, s2 ). 
saw( r3, s3 ). 
saw( r4, sl ). 
saw( r4, s2 ). 
saw( r4, s3 ). 

In model (1) there are four representatives and 
three samples and some of the representatives 
saw some of the samples. The algorithm 
generates suitable quantifiers to complete 
sentences of the form: 

QR representative(s) saw Qs sample(s) 

where QR and Qs can be arbitrary quantifiers 
like; some, two, all, both, one o f  the, most, etc. 
The algorithm also handles models containing 
more relationships than model (I) to generate 
sentences of the form: 

QR representative(s) o f  Q c company(s) 
saw Qs sample(s) 

QR representative(s) saw Qs sample(s) o f  
Qp product(s) 

QR representative(s) of  Qc company(s) 
saw Qs sample(s) of  Qp product(s) 

One of  the most striking things about the 
problem is that there are generally a great 
many sentences which provide reasonable 
descriptions of any given model. For example, 
the following are all acceptable for model (1). 

2 Every representative saw a sample 

3 Every representative saw at least one 
sample 

4 Most representatives saw at least two 
samples 

5 A representative saw every sample 

6 At least one representative saw every 
sample 

7 At least two representatives saw most 
samples 

It turns out that there are three distinct sources 
of this variation and they correspond to three 
different kinds of choices which are made in 
the generation algorithm. They are: 

o quantifier scoping choices 
o choice of focus sets 
o choice of individual quantifiers constrained 

by the above two choices 

A great deal has been written about the 
quantifier scoping problem for natural 
language analysis (Hobbs & Shieber 1987) 
and much of this is applicable to the 
generation problem in the sense that any 
particular description must assume some 
particular quantifier scoping arrangement. For 
example, sentence (2) assumes that "Every 
representative" has wide scope while sentence 
(5) assumes that "every sample" has wide 
scope, and the sentences are only satisfied in 
the model under these assumptions. In fact 
sentences (2), (3) and (4) all assume wide 
scope for "representative" while sentences 
(5), (6) and (7) all assume wide scope for 
"sample". The gencration algorithm, of 
necessity, incorporates quantifier scoping. 
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The concept of a focus set has no correlate in 
the language analysis literature although it is 
similar to what Barwise and Cooper (Barwise 
and Cooper 1981) call a witness set. It has to 
do with choosing some particular subset of  the 
model on which to base the description. 
Sentence (2) talks about all three 
representatives while sentence (4) talks only 
about the subset {r2,r3,r4}. This subset stands 
in the realtion most to the entire set of  
representatives {rl,r2,r3,r4} and is the focus 
set for R in sentence (4). The concept of  a 
focus set will be made more precise below 
where dependency functions are discussed. 

saw( QI(R, rep(R)), Q2(S, sample(S)) ) 

saw( Q3(R, rep(R) ^ of(R, Q4(C,com(C))), 
Qs(S, sample(S)) ) 

and the purpose of  the algorithm is to assign 
values to the Oi's given some suitable model. 
It works by processing the PAS recursively 
and non-deterministically selecting quantifier 
scopings and focus sets at each level. 
Quantifiers are then generated based on the 
cosen focus set. 

Inputs to the algorithm 

The inputs to the algorithm are: 

a model like (1) 
a predicate argument structure for the 
target sentence 

A predicate argument structure (PAS) is 
essentially an unscoped logical form of  the 
form taken as input to Hobs and Shieber's 
algorithm (Hobbs & Shieber 1987). It makes 
explicit the relationships between predicates 
and there arguments but does not express any 
quantifier scope relationships. Sentence (2) 
has the following PAS: 

saw(every(R,rep(R)), a(S,sample(S)) ) 

Quantifier scoping 

Since the particular scoping framework 
underlying the generation algorithm is novel a 
brief explanation is appropriate. The orthodox 
approach to quantifier scoping is embodied in 
Hobbs and Sheiber's algorithm and it permits 
all permutations of  quantifiers such that there 
are no unbound variables in the resulting 
logical form. For example, Hobbs and 
Shieber's algorithm produces the scopings 
(8b-f) for sentence (8a)t: 

8 a Every representative of  a company saw 
some samples 

b R > C > S  
c C > R > S  
d S > R > C  
e C > S > R  
f S > C > R  

and sentence (8a) has the following one. 

saw( every(R, rep(R)Aof(R,a(C,com(C))), 
some(S, sample(S)) ) 

Each variable in a PAS has a quantifier and a 
restriction which restricts the values which it 
may take. 

O 

O 

S's restriction is sample(S) in both cases 
R's restriction is rep(R) in the first PAS 
and rep(R)Aof(R,a(C,company(C)) in the 
second 

Since the algorithm generates quantifiers its 
input PASs are not exactly like these. Instead 
they have gaps where quantifiers should be: 

where R > C > S indicates that "Every 
representative" outscopes "a company" which 
in turn outscopes "some samples". The 
missing permutation, R > S > C, is not 
permitted because it violates what has become 
known as the unbound variable constraint. 

The scoping framework which underlies the 
generation algorithm recognises fewer 
scopings than (8). The relative scope of  two 
quantifiers is only considered for variables 

We adopt the convention of naming variables 
with the first letter of the head noun with which 
they are associated (R=representative, C=company, 
S=sample) and using the symbol '>' to denote 
relative scope. 
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which are arguments to the same predicate. 
For example, R must be scoped relative to C 
because they are both arguments to the 
predicate of  The possibilities are R > C and t3 
> R. Similarly, R and S are arguments to the 
predicate saw and may be scoped either R > S 
or S > R. The relative scoping of  C and S is 
never considered directly because they do not 
participate directly in any single predication in 
the sentence. They may however end up with 
a relative scoping as a result of  taking the 
transitive closure of  other scoping 
relationships. For example, if it is decided that 
C > R and R > S, then clearly, since scope is 
transitive, C > R. In this framework the 
following scopings are allowed for (8a). 

9 a R > S , R > C  
b S > R > C  
c C > R > S  
d S > R , C > R  

It is clear from (8) and (9) that this framework 
undergenerates in comparison with Hobbs and 
Shieber's. However, in the context of  
language generation, undergeneration is not 
necessarily a serious problem, provided that 
there is the ability to adequately describe any 
model. In fact there is an argument to be made 
in favour o f a  scoping framework which 
undergenerates with respect to Hobbs and 
Shieber's as a general approach to quantifier 
scoping (Park 1995). This is the subject of  a 
future paper. 

Dependency functions, partitions 
and focus sets 

Each variable in a PAS has a candidate set 
which is defined by its restriction and the 
model under consideration. 

Definition 1: candidate set 
A variables candidate set is the set of  
individuals from the model which satisfy the 
variables restriction. 

For the PAS: 

saw(every(R,rep(R)), a(S,sample(S)) ) 

and model (1), R's candidate set is 
{rl,r2,r3,r4} and S's is {sl,s2,s3}. 

When we say that "Every representative" has 
wide scope we are saying that there is a 
function which maps R's candidate set onto 
the power set of  S 's  candidate set. This 
dependencyffunction is computed from model 
(1) and is exhaustively listed in (lO) below. 

10 saw: {r l ,r2,r3,r4} ~ power({sl,s2,s3}) 
rl ~ { s l  } 
r2 ~ { s l ,  s2 }  
r3 --~ { s2, s3 } 
r4 ~ { s l , s 2 ,  s3 }  

Alternatively, i fS  is given wide scope the 
following dependency function is computed. 

11 saw: {s l ,s2,s3} - ,  power({rl,r2,r3,r4}) 
s l  --~ { r l ,  r2, r4}  
s2 --~ { r2, r3, r4 } 
s3 ~ {r3,  r4 }  

Focus sets were discussed briefly above and 
are made more precise now in the context of 
dependency function partitions. 

Any dependency function can be partitioned 
by choosing a arbitrary subset of  the mappings 
it contains as its focus, the remainder being its 
complement. Of course, the domains and 
ranges of  these sub-functions are 
appropriately adjusted. 

The partitions (12a-c) are among the possible 
partitions of  dependency function ( I 0). 

12 a focus: saw: { r l }  ~ power ( { s l } )  
r l -+ { s l  } 

compt: saw: {r2,r3,r4} 
power({sl ,s2,s3}) 

r2 ~ { s l ,  s2 }  
r3 ~ {s2,  s3 }  
r4 -~ { s l ,  s2, s3 } 

focus: saw: {r2,r3} --~ power({sl,s2,s3}) 
r2 --~ { s l ,  s2 }  
r3 --~ { s2, s3 } 

compt: saw: {r l , r4} ~ power({sl,s2,s3}) 
rl ~ { s l  } 
r4 --~ { s l ,  s2, s3 }  
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focus:saw:{r2,r3,r4} --~ power({sl ,s2,s3}) 
r2 --~ { s l , s 2 }  
r3 ~ {s2, s3}  
r4 ~ { s l ,  s2, s3}  

The mapping from partitioned dependency 
f,mction to quantifiers is non-deterministic as 
(13) shows. For instance, partition (12b) 
gives, at least, the three sentences (13bi,ii,iii). 

compt: saw: { r l }  ~ power({sl}) 
rl -~ { s l }  

Definition 2: focus set 
The focus set for  a variable, given a 
particular partition is either: 
o the domain o f  the partition's focus 
o the union of  the range o f  the partition's 

focus 
depending on the variable o f  interest. 

Not all sentences provide equally good 
descriptions of the model but they are all true 
in it. For example, (13ai) is true in (1), 
assuming "a" means at least one, but is not 
very informative. Bigger focus sets tend to 
give more information and sound more natural 
however the generation algorithm is 
concerned only with presenting alternatives 
and not with selecting between them. 

For example, (12a-c) define the following 
candidate sets for R and S. 

{ r l }  { s l }  
{r2, r3} { s l ,  s2, s3}  
{ r2, r3, r4 } { s l ,  s2, s3 } 

It is useful to note that a variable's candidate 
set is related to an unpartititioned dependency 
function in exactly the same way that its focus 
set is related to the focus of the partitioned 
function. These relationships are illustrated in 
appendix 1. 

Individual quantifiers are selected for 
generation on the basis of  dependency 
function partitions. For example, the 
descriptions (13a-c) are licensed by the 
partitions (12a-c) respectively. 

13a i A representative saw a sample 

ii Exactly one representative saw 
exactly one sample 

III 

At least hal[the representatives saw 
exactly two samples 

Exactly two representatives saw 
exactly two samples 

Two. representatives saw most 
samples 

Exactly three representatives saw at 
least twq samples 

Three representatives saw some 
samples 

Generating quantifiers 

The process of  generating quantifiers takes 
place after a scoping has been chosen and a 
dependency function has been constructed and 
partitioned, so that all decisions are made in 
the context of a particular partitioning of a 
particular dependency function. 

Generation consists of  going through the list 
of  all possible quantifiers and checking 
whether or not each one is consistent with the 
appropriate variable in the current dependency 
function partition. Those which are consistent 
are then generated and those which are 
inconsistent are rejected. To check the 
consistency of a particular quantifier with a 
particular variable it is first necessary to 
compute the variable's candidate set, focus 
set, and focus maximum and focus minimum. 

Definition 3: Focus maximum and minimum 
For a variable with wide scope the focus 
maximum (Fmax) and focus minimum 
(Fmin) are the same. They are simply the 
size o f  the focus set or, equivalently, the 
number o f  mappings in the focus of  the 
dependency function. 

e.g. R in (12a): Fmax=Fmin= I{r l } l  = 1 
R in (12c): Fmax=Fmin= I {r2,r3,r4} I = 3 

For a variable with narrow scope the focus 
maximum (Fmax) is equal to the size of  the 
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biggest member o f  the range o f  the focus of  
the dependency function. 

e.g. S in (12a): Fmax = max( l {s l } i )  = 1 
S in (12c): Fmax= 
max( I {sl ,s2} I, I {s2,s3} ], I{sl ,s2,s3} I ) 

=3  

The focus minimum is defined along the 
same lines as he focus maximum except that 
the minimum set size is taken. 

e.g. S in (12a): Fmin= min( [ {s l } l )=  1 
S in (12c): Fmin= 
min(I {s1,s2}l, I {s2,s3}l, I {sl,s2,s3}l ) 

=2 

q_inc( 1,_, [a] ). 
q_inc( 1,_, [somesing] ). 
q_inc( 1,_, [at, least,one] ). 
q_inc( 2, _, [at, least,two] ). 

q_inc( N, _, [some_plur] ) :-  N > 1. 
q_inc( N, M, [most] ) :- M < 2*N. 

q_inc( 1, 1, [the] ). 
q_inc( 2, 2, [both] ). 
q_inc( 3, 3, [all,three] ). 
q_inc( N, N, [all] ). 
q_inc( N, N, [each] ). 
q_inc( N, N, [every] ). 

For R in (12a) the appropriate call is therefore: 

The checking procedure varies according to 
the type of  quantifier under consideration 
where quantifiers are classified as one of  three 
types monotone increasing, monotone 
decreasing or cardinal (Barwise and Cooper 
1981). 

o Monotone increasing quantifiers are those 
with an at least N interpretation. They 
include; a, some_sing, some_plur, the, 
both, many, at least four  

o Monotone decreasing quantifiers are ones 
with an at most N interpretation. They 
include; no, few, at most three, less than 
three quarters 

o Cardinal quantifiers are of  the form exactly 
N 

?- q_inc( 1, 4, QR ). 

which returns the following quantifiers: a, 
some_sing, at least one. Similarly, for 9 in 
(12a) the appropriate call is: 

?- q_inc( 1, 3, QS ). 

which returns the same set ofquantifiers. 
Hence sentence (13ai) is generated, as is: 

Some representatives saw _a sample 
At least one representative saw a sample 
A representative saw some samples 

and other similar sentences formed by 
selecting from the above quantifiers. 

The check for monotone increasing quantifiers 
is simplest. The acceptability of  each 
quantifier is as defined by a call to the 
following Prolog goal: 

?- q_inc( Fmin, Nc, QUANT ). 

For a monotone decreasing quantifier the 
check depends on whether it is in wide scope 
position or narrow scope position. In narrow 
scope position the check is similar to the one 
for monotone increasing quantifiers except 
that: 

where; Fmin = the focus minimum, Nc = 
I candidate set], and the q_inc/3 relation is 
defined along the fol lowing lines. 

14 % q_inc( +N1, +N2, ?Q ) defines Q as 
% - "at least N1 out of a possible N2" 
% e.g. "a man" means 
% - at least 1 man out of any number 
% "some men" means 
% - at least 2 men out of any number 
% "both men" means 
% - at least 2 men out of a possible 2 

o a different collection of quantifiers is 
checked - the monotone decreasing ones 

o the focus maximum is input rather than the 
focus minimum. 

?- q_dec( Fmax, Nc, QUANT ). 

where; Fmax = the focus maximum, Nc = 
I candidate set[, and the q_dec/3 relation is 
defined along the fol lowing lines. 
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15 % q_dec( +N1, +N2, ?Q ) defines Q as 
% - "at most N1 out of a possible N2" 
% e.g. "no man" means 
% - at most 0 men out of any number 
% "few men" means 
% - at most half of all the men 
% "neither man" means 
% - at most 0 men out of 2 

q_dec( 0, _, [no] ). 
q_dec( 2, _, [at, most, two] ). 

q_dec( N, M, [few] ) :- M < 2*N. 

q_dec( 0, 2, [neither] ). 

The check for monotone decreasing 
quantifiers in wide scope position is a little bit 
trickier. For example, to check the 
consistency of  the quantifier at most two in 
"At  most two representatives saw a sample", 

assuming R > S, the following checks need to 
be made. 

O There must be a set of  at most two of R's 
who may or may not have seen a sample. 
This entails checking that R's focus set 
contains exactly two members. 
All other R's outside this set must certainly 
not have seen a sample. This entails 
checking the complement of  the 
dependency function to make sure that the 
quantifier a fails to be consistent with the 
variable S. 

These checks are carried by calls to q_dec/3 
an q_inc/3 with appropriate input values. 

The check for cardinal quantifiers is defined 
in terms of  two sub checks: one for a 
monotone increasing quantifier and one for a 
monotone decreasing. This follows from the 
observation that exactly N meant the same as 
(at least N)A(at most N). 

Embedded quantifiers 

The preceding discussion concentrated on 
simp!e linguistic structures like (2-7) which 
contain one main verb and noun phrases with 
no recursive structure. The processing of  a 
more complex structure like: 

16 saw( QR(R, rep(R) ^ of(R, Qc(C,com(C))), 
Qs(S, sample(S)) ) 

is done by breaking it down into sub- 
structures (17) which are processed almost 
independently. 

17 a saw( QR(R .... ), Qs(S, sample(S))) 
b of( QR,(R, rep(R)), Qc(C, com(C)) ) 

The variable R is assigned the quantifier OR in 
(1 7a) and the quantifier OR, in ( 1 7b) but 
clearly only one of  these will ultimately be 
generated and some special treatment is 
required. Thes are called R's outer and inner 
quantifiers respectively. PAS (17b) is 
processed first. A scoping is chosen for R and 
C and a dependency function is constructed in 
the normal way but when it comes to 
partitioning the function and generating a 
quantifier for C some care must be taken. 
Some choices of  partition and quantifier must 
be excluded. What is required is that the 
resulting focus set for R is the set of  all 
representatives who satisfy restriction (17b) 
under the chosen partition and quantifier. 
Consider the following dependency function 
and associated partition. 

18a of: {r l ,r2,r3} ~ power( {cl,c2,c3} ) 
r l  --~ { c l  } 
r2 --~ { c 2 }  
r3 --~ { c 3 }  

b focus: of: {r l , r2} ~ power({cl,c2}) 
r l  ~ { c l  } 
r2 ~ { c 2 }  

compt: of: {r3} ~ power({c3}) 
r3 ~ { b 3 }  

Based on the focus in (18b) the quantifier 
exactly one might be generated for C. The 
corresponding candidate set for R is {rl,r2} but 
this is not the set of  all representatives who 
satisfy the restriction since r3 also satisfies it. 
It is to avoid this anomaly that the following 
constraint on the acceptability of  dependency 
function partitions in this context. 
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19 If variable R is in wide scope position in 
(17b) then QR' must be of the form exactly 
N but is not generated in the final output. 

Constraint (19) restricts the range of 
acceptable partitions by restricting the range 
of  acceptable inner quantifiers for R. It also 
specifies R's outer quantifier as the one which 
is to be finally generated. It guarantees that 
R's focus set is maximal in the sense that it 
contains all possible R's which satisfy the 
restriction and avoids the above anomoly by 
failing to allow partition (18b). A parallel but 
different constraint is applied whenever R is 
in narrow scope position. 

20 If variable R is in narrow scope position in 
(17b) then QR must be the quantifier V but 
is not generated in the final output. 

The a l g o r i t h m  

The overall strategy is to process a PAS 
recursively, assigning quantifiers to the most 
deeply nested structures first. As a variable's 
restriction is processed the resulting focus set 
is passed back up to act as the candidate set 
for the same variable in the embedding 
structure. An inner quantifier is also returned 
together with a flag which indicates scoping 
choices within the restriction. The algorithm 
is as follows, where the choose construct 
indicates non-determinism. 

21 to process_PAS p(Qx(X,RX),Qy(Y,RY) ) 
process_RES RX; process_RES RY; 
% returned by calls to process_RES: 
% Xs, Ys: the candidate sets forX&Y 
% Qx', Qy': the innerquants forX&Y 
% ScpX, Scp Y: = '>' if head variable 
% is given wide scope within restriction, 
% '<' if it has narrow scope or 'nil' if there 
% are no other variables within the rest'n 
choose a scoping for X and Y; 
construct the dependency function; 
choose a partition; 
choose outer quantifiers Qx" and Qy"; 
% must be consistent with consts. 19&20 
if ScpX = > or ScpX = nil then Qx := Qx" 

else Qx := Qx'; 
if ScpY = > or ScpX = nil then Qy := Qy" 

else Qy := Qy'; 
end process_PAS; 

to process_RES RX % X is head of phrase 
% this procedure returns: Xs, Qx & ScpX 
case 1: RX = p(Qx(X,RX),Qy(Y,RY)) 
% i.e. RX contains an embedded NP 

process_RES RY; % returns Ys Qy' ScpY 
Xs := { X: RX }; 
choose a scoping for X and Y; 
% and so assign a value to ScpX 
construct a dependency function; 
choose a partition; 
choose quantifiers Qx and Qy"; 
% must be consistent with constraints 
% 19&20 and ScpX & ScpY 

case 2: RX = p(X) 
% i.e. RX contains no embedded structure 

Xs := { X: p(X) }; Qx := nil; ScpX := nil; 
end process_RES; 

An example 

Consider the following model: 

rep( rl ). of( r l ,  cl ). saw( rl, s l  ). 
rep( r2 ). of( r2, c2 ). saw( rl, s2 ). 
rep( r3 ). saw( r2, sl ). 
rep( r4 ). samp( sl  ). saw( r2, s2 ). 

samp( s2 ). saw( r3, s l  ). 
corn( cl ). saw( r4, s2 ). 
corn( c2 ). 

and the target PAS (16). According to 
process_PAS the following restrictions must 
be processed first. 

22 a of(QR(R,rep(R)), Qc(C,com(C)) ) 
b samp(S) 

Starting with (22a): 

candidate set R = { r l ,  r2, r3, r4 } 
candidate set C = { c l ,  c2 } 
choose scoping R > C 

the following dependency function is 
constructed. 

23 of: {rl,r2,r3,r4} --~ power'( {cl ,c2} ) 
rl ~ { c l  } 
r2 ~ { c 2 }  
r3 ~ { }  
r4 --~ { }  

The following partition is chosen. 
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24 focus: of: {r l , r2} ~ power({cl,c2}) 
rl ~ { c l  } 
r2 ~ { .c2}  

compt: of: {r3,r4} ~ power({}) 
r3 ~ { }  
r4 --, { }  

The quantifier a is chosen for C and the 
candidate set {rl ,r22} is returned. 

Processing (22b) is straightforward and 
consists of  returning the value {sl,s2}, the set 
of  all samples. Now both restrictions have 
been processed and PAS (16) is processed 
with the candidate sets {rl ,r2} and {sa ,s2}. 

candidate set R = { r l ,  r2 } 
candidate set S = { s l ,  s2 } 
choose scoping R > S 

The following dependency function is 
constructed. 

25 saw: {r l ,r2} ~ power( {s l ,s2}  ) 
rl ~ { s l , s 2 }  
r2 ~ { s l , s 2 }  

and the following partition is chosen. 

26 focus: saw: {r l ,r2} ~ power( {s l ,s2}  ) 
rl ~ { s l ,  s2 }  
r2 ~ { s l ,  s2 }  

compt: saw: { } ~ power( { } ) 

The quantifiers every and both are now chosen 
for R and S respectively giving the following 
sentence. 

27 Ever~ representative of _a company saw 
both samples 

Of course different scoping and partitioning 
choices may have generated different 
quantifiers. Those in (27) are based on the 
scoping choices R > C and R > S with the 
partition choice shown in (26). 

Conclusion 

An algorithm has been described for 
generating quantifiers in English sentences 

which describe small models containing 
collections of individuals which are inter- 
related in various ways. 

The algorithm performs a great deal of  search 
with three levels of  non-determinism 
corresponding to. 

o quantifier scoping choices 
o choice of focus sets / dependency function 

partitions 
o choice of individual quantifiers constrained 

by the above two choices 

This is not necessarily a problem in the 
context of  language generation where only 
one solution is sought. 

An obvious improvement to the algorithm 
would be to generate a preferred sentence or 
to rank the outputs as to how well they 
describe the model. We are currently looking 
at how this might be done by incorporating 
something like the preference heuristics that 
have been used successfully to select 
quantifier scopings in natural language 
analysis (Grosz et al 1987). After the choose 
scoping step in the algorithm quantifiers can 
be proposed which are preferred in the given 
scoping position. These proposed quantifiers 
are then checked first by q_inc/3 and q_dec/3. 
The details of  this have not yet been worked 
out. 

The description given of  the algorithm is 
based on binary predicates for the sake of 
brevity and clarity but the generalisation to 
predicates with three or more arguments is not 
difficult. For example, sentences of the 
following form can be generated: 

28 Every boy gave most girls a kiss 

where there is a different kiss for each 
<boy,girl> pair. The resulting dependency 
functions are, however, much bigger, and 
consequently the search space is also. 

It is well documented (Webber 1978, Park 
1995) that some plural noun phrases are 
capable of  collective interpretations which are 
not sensitive to quantifer  scoping. For 
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example, the sentence "'Three men lifted two 
boxes" has an interpretation in which three 
men combined their efforts in a single act of 

lifting two boxes. The algorithm does not 
deal with collective interpretations like this. 
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Appendix 1: terminology diagram 

Candidate sets for  R and C 

Whole dependency 
function 

One possible ] 
partition -focus and 

complement 

~ power(, 
{ cl ,  c2 } 

r2 ~ { c 2 }  
r3 ~ { c 3 }  

cl,  c2, c3 })) 

. ~ - ~  power(( 
cl ,  c2 } 

{ c 2 }  

of: { r3 } ~ power( { c3 } ~", x 
r3 ~ { b 3 }  

ocus sets for  R and C 
• Focus maximum (R) = 2 

Focus minimum (R) = 2 
Focus maximum (C) = 2 
Focus minimum (C) = 1 
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