
A. L i n e a r O b s e r v e d T i m e S t a t i s t i c a l P a r s e r B a s e d on M a x i m u m
E n t r o p y M o d e l s

Adwait Ratnaparkhi*
Dept. of Computer and Information Science

University of Pennsylvania
200 South 33rd Street

Philadelphia, PA 19104-6389
adwait~unagi, cis. upenn, edu

Abstract

This paper presents a statistical parser for
natural language that obtains a parsing
accuracy--roughly 87% precision and 86%
recall--which surpasses the best previously
published results on the Wall St. Journal
domain. The parser itself requires very lit-
tle human intervention, since the informa-
tion it uses to make parsing decisions is
specified in a concise and simple manner,
and is combined in a fully automatic way
under the maximum entropy framework.
The observed running time of the parser on
a test sentence is linear with respect to the
sentence length. Furthermore, the parser
returns several scored parses for a sentence,
and this paper shows that a scheme to pick
the best parse from the 20 highest scoring
parses could yield a dramatically higher ac-
curacy of 93% precision and recall.

1 Introduction

This paper presents a statistical parser for natural
language that finds one or more scored syntactic
parse trees for a given input sentence. The parsing
accuracy--roughly 87% precision and 86% recall--
surpasses the best previously published results on
the Wall St. Journal domain. The parser consists of
the following three conceptually distinct parts:

1. h set of procedures that use certain actions to
incrementally construct parse trees.

2. A set of maximum entropy models that com-
pute probabilities of the above actions, and ef-
fectively "score" parse trees.

* The author acknowledges the support of AI:tPA
grant N66001-94C-6043.

3. A search heuristic which attempts to find the
highest scoring parse tree for a given input sen-
tence.

The maximum entropy models used here are simi-
lar in form to those in (Ratnaparkhi, 1996; Berger,
Della Pietra, and Della Pietra, 1996; Lau, Rosen-
feld, and Roukos, 1993). The models compute the
probabilities of actions based on certain syntactic
characteristics, or features, of the current context.
The features used here are defined in a concise and
simple manner, and their relative importance is de-
termined automatically by applying a training pro-
cedure on a corpus of syntactically annotated sen-
tences, such as the Penn Treebank (Marcus, San-
torini, and Marcinkiewicz, 1994). Although creat-
ing the annotated corpus requires much linguistic
expertise, creating the feature set for the parser it-
self requires very little linguistic effort.

Also, the search heuristic is very simple, and its
observed running time on a test sentence is linear
with respect to the sentence length. Furthermore,
the search heuristic returns several scored parses for

-a sentence, and this paper shows that a scheme to
pick the best parse from the 20 highest scoring parses
could yield a dramatically higher accuracy of 93%
precision and recall.

Sections 2, 3, and 4 describe the tree-building
procedures, the maximum entropy models, and the
search heuristic, respectively. Section 5 describes
experiments with the Penn Treebank and section
6 compares this paper with previously published
works.

2 Procedures for Building Trees

The parser uses four procedures, TAG, CHUNK,
BUILD, and CHECK, that incrementally build parse
trees with their actions. The procedures are ap-
plied in three left-to-right passes over the input sen-
tence; the first pass applies TAG, the second pass ap-
plies CHUNK, and the third pass applies BUILD and

Pass Procedure Actions Description
First Pass TAG A POS tag in tag set Assign POS Tag to word

Second Pass C H U N K S t a r t X, J o i n X, Other Assign Chunk tag to POS tag and
word

Third Pass B U I L D S t a r t X, J o i n X, where X is a Assign current tree to s tar t a new
constituent label in label set constituent, or to join the previ-

ous one
CHECK Yes, No Decide if current consti tuent is

complete

Table 1: Tree-Building Procedures of Parser

CHECK. The passes, the procedures they apply, and
the actions of the procedures are summarized in ta-
ble 1 and described below.

The actions of the procedures are designed so tha t
any possible complete parse tree T for the input sen-
tence corresponds to exactly one sequence of actions;
call this sequence the derivation of T. Each proce-
dure, when given a derivation d = { a l . . . an}, pre-
dicts some action a,+l to create a new derivation
d' = {al . . . a , + l }. Typically, the procedures postu-
late many different values for a , + l , which cause the
parser to explore many different derivations when
parsing an input sentence. But for demonstrat ion
purposes, figures 1-7 trace one possible derivation
for the sentence "I saw the man with the telescope",
using the part-of-speech (POS) tag set and con-
stituent label set of the Penn treebank.

2.1 First Pass

The first pass takes an input sentence, shown in fig-
ure 1, and uses TAG to assign each word a POS tag.
The result of applying TAG to each word is shown in
figure 2.

2.2 Second Pass

The second pass takes the output of the first pass
and uses CHUNK to determine the "flat" phrase
chunks of the sentence, where a phrase is "flat" if
and only if it is a constituent whose children consist
solely of POS tags. Starting from the left, CHUNK
assigns each (word,POS tag) pair a "chunk" tag, ei-
ther Start X, Join X, or Other. Figure 3 shows the
result after the second pass. The chunk tags are then
used for chunk detection, in which any consecutive
sequence of words win.., w, (m _< n) are grouped
into a "flat" chunk X if wm has been assigned S t a r t
X and W m + l . . . w , have all been assigned J o i n X.
The result of chunk detection, shown in figure 4, is
a forest of trees and serves as the input to the third
pass.

Procedure Actions Similar
Shift-Reduce
Parser Action

CHECK No shift
CHECK Yes reduce c~, where

a is CFG
rule of proposed
consti tuent

BUILD S t a r t X, J o i n X D e t e r m i n e s a for
subsequent re-
duce operations

Table 2: Comparison of BUILD and CHECK to oper-
ations of a shift-reduce parser

2.3 T h i r d Pass

The third pass always alternates between the use
o f BUILD and CHECK, and completes any remain-
ing constituent structure. BUILD decides whether
a tree will s tar t a new constituent or join the in-
complete constituent immediately to its left. Ac-
cordingly, it annotates the tree with either S t a r t X,
where X is any constituent label, or with J o i n X,
where X matches the label of the incomplete con-
stituent to the left. BUILD always processes the
leftmost tree without any S t a r t X or J o i n X an-
notation. Figure 5 shows an application of BUILD

in which the action is J o i n VP. After BUILD, con-
trol passes to CHECK, which finds the most recently
proposed constituent, and decides if it is complete.
The most recently proposed constituent, shown in
figure 6, is the r ightmost sequence of trees t i n . . , tn
(m < n) such tha t tm is annota ted with S t a r t X
a n d t m + l . . • tn are annota ted with J o i n X. If CHECK
decides yes , then the proposed consti tuent takes its
place in the forest as an actual constituent, on which
BUILD does its work. Otherwise, the consti tuent is
not finished and BUILD processes the next tree in
the forest, tn+ 1. CHECK always answers no if the

2

I saw the man with the telescope

Figure 1: Initial Sentence

PRP VBD DT NN IN DT NN
I I i i I i I
I saw the man with the telescope

Figure 2: The result after First Pass

Start NP Other Start NP Join NP Other Start NP Join NP
i i I I i i I

PRP VBD DT NN IN DT NN
i I I i i i i
I saw the man with the telescope

Figure 3: The result after Second Pass

NP VBD NP IN

PRP saw DT NN with
I I I
I the man

NP

DT NN
i i

the telescope

Figure 4: The result of chunk detection

Start S Start VP Join VP IN NP
I I I I

NP VBD NP with DT NN
I f ~ i i

PRP saw DT NN the telescope
I I i
I the man

Figure 5: An application of BUILD in which Join VP is the action

Start S ? IN NP

NP Start VP Join VP with DT NN
I I I I I

PRP VBD NP the telescope

I saw DT NN
I I

the man

Figure 6: The most recently proposed constituent (shown under ?)

3

Start S Start VP Join VP ?
I I i I

NP VBD NP IN

PRP saw DT NN with
I I I
I the man

NP

DT NN
I I

the telescope

Figure 7: An application of CHECK in which No is the action, indicating that the proposed constituent in
figure 6 is not complete. BUILD will now process the tree marked with ?

proposed constituent is a "fiat" chunk, since such
constituents must be formed in the second pass. Fig-
ure 7 shows the result when CHECK looks at the pro-
posed constituent in figure 6 and decides No. The
third pass terminates when CHECK is presented a
constituent tha t spans the entire sentence.

Table 2 compares the actions of BUILD and CHECK
to the operations of a standard shift-reduce parser.
The No and Yea actions of CHECK correspond to the
shift and reduce actions, respectively. The impor-
tant difference is tha t while a shift-reduce parser
creates a constituent in one step (reduce a) , the pro-
cedures BUILD and CHECK create it over several steps
in smaller increments.

3 P r o b a b i l i t y M o d e l

This paper takes a "history-based" approach (Black
et al., 1993) where each tree-building procedure uses
a probability model p(alb), derived from p(a, b), to
weight any action a based on the available context,
or history, b. First, we present a few simple cate-
gories of contextual predicates that capture any in-
formation in b tha t is useful for predicting a. Next,
the predicates are used to extract a set of features
from a corpus of manually parsed sentences. Finally,
those features are combined under the maximum en-
t ropy framework, yielding p(a, b).

3.1 C o n t e x t u a l P r e d i c a t e s

Contextual predicates are functions that check for
the presence or absence of useful information in a
context b and return true or false accordingly. The
comprehensive guidelines, or templates, for the con-
textual predicates of each tree building procedure
are given in table 3. The templates use indices
relative to the tree tha t is currently being modi-
fied. For example, if the current tree is the 5th
tree, cons(-2) looks at the constituent label, head
word, and s tar t / join annotation of the 3rd tree in
the forest. The actual contextual predicates are gen-
erated automatically by scanning the derivations of
the trees in the manually parsed corpus with the

templates. For example, an actual contextual pred-
icate based on the template cons(0) might be "Does
cons(0) = { NP, he } ?" Constituent head words
are found, when necessary, with the algorithm in
(Magerman, 1995).

Contextual predicates which look at head words,
or especially pairs of head words, may not be re-
liable predictors for the procedure actions due to
their sparseness in the training sample. Therefore,
for each lexically based contextual predicate, there
also exist one or more corresponding less specific,
or "backed-off", contextual predicates which look
at the same context, but omit one or more words.
For example, the contexts cons(0, 1"), cons(0*, 1),
cons(0*, 1") are the same as cons(0,1) but omit ref-
erences to the head word of the 1st tree, the 0th
tree, and both the 0th and 1st tree, respectively.
The backed-off contextual predicates should allow
the model to provide reliable probability estimates
when the words in the history are rare. Backed-off
predicates are not enumerated in table 3, but their
existence is indicated with a * and t.

3.2 M a x i m u m E n t r o p y F r a m e w o r k

The contextual predicates derived from the tem-
plates of table 3 are used to create the features nec-
essary for the maximum entropy models. The pred-
icates for TAG, CHUNK, BUILD, and CHECK are used
to scan the derivations of the trees in the corpus to
form the training samples "~^c, TcMusK, '~U~LD, and
TCMECK, respectively. Each training sample has the
form T = ((al , 51), (a2, b2) , . . . , CaN, bN)}, where ai
is an action of the corresponding procedure and bi
is the list of contextual predicates tha t were t r u e in
the context in which al was decided.

The training samples are respectively used to cre-
ate the models PT^G, PCHUNK, PBUILD, and PCMECK, all of
which have the form:

k

p(a, b) = I I _ij(o,b ~j (1)
j----1

where a is some action, b is some context, ~" is a nor-

4

Model Categories Description Templates Used
TAG See (Ratnaparkhi, 1996)

CHUNK chunkandpostag(n)*

BUILD

CHECK

chunkandpostag(m, n)*

cons(n)

cons(re, n)*
cons(m, n,p) T

punctuation

checkcons(n)*

checkcons(m,n)*

production

surround(n)*

The word, POS tag, and chunk tag of n th
leaf. Chunk tag omitted if n > 0.

chunkandpostag(m) & chunkandpostag(n)

The head word, constituent (or POS) la-
bel, and start/ join annotation of the n th
tree. Start/join annotation omitted if
n > 0 .
cons(m) & cons(n)
cons(m), cons(n), & cons(p).

The constituent we could join (1) contains
a "[" and the current tree is a "]"; (2)
contains a "," and the current tree is a ",";
(3) spans the entire sentence and current
tree is "."
The head word, constituent (or POS) la-
bel of the nth tree, and the label of pro-
posed constituent, begin and last are
first and last child (resp.) of proposed
constituent.
checkcons(m) & checkcons(n)

Constituent label of parent (X), and
constituent or P0S labels of children
(Xz . . . Xn) of proposed constituent
POS tag and word of the nth leaf to the
left of the constituent, if n < 0, or to the
right of the constituent, if n > 0

chunkandpostag(O),
chunkandpostag(-1),
chunkandpostag(-2)
chunkandpostag(1),
chunkandpostag(2)
chunkandpostag(-1, 0),
chunkandpostag(O, 1)
cons(O), cons(-1), cons(-2),
cons(l), cons(2)

cons(-1, 0), cons(O, 1)
cons(O, -1, -2), cons(O, 1, 2),
cons(-1, O, 1)
bracketsmatch, iscomma,
endofsentence

checkcons(last) ,
checkcons(begin)

checkcons(i, last), begin <
i < last
production=X --} X1 ... Xn

surround(I), surround(2),
surround(-1), surround(-2)

Table 3: Contextual Information Used by Probability Models (* = all backed-off contexts are used, t = only
backed-off contexts that include head word of current tree, i.e., 0th tree, are used)

5

malization constant, a j are the model parameters,
0 < a j < oo, and fj(a, b) E {0, 1} are called features,
j = {1 . . . k}. Features encode an action a' as well
as some contextual predicate cp that a tree-building
procedure would find useful for predicting the action
a'. Any contextual predicate cp derived from table 3
which occurs 5 or more times in a training sample
with a particular action a' is used to construct a
feature f j :

1 if cp(b) = t r u e && a = a'
f j (a ,b)= 0 otherwise

for use in the corresponding model. Each feature f j
corresponds to a parameter a j , which can be viewed
as a "weight" that reflects the importance of the
feature.

The parameters { a l . . . a n } are found automat-
ically with Generalized Iterative Scaling (Darroch
and Ratcliff, 1972), or GIS. The GIS procedure, as
well as the maximum entropy and maximum likeli-
hood properties of the distribution of form (1), are
described in detail in (Ratnaparkhi, 1997). In gen-
eral, the maximum entropy framework puts no lim-
itations on the kinds of features in the model; no
special estimation technique is required to combine
features that encode different kinds of contextual
predicates, like punctuation and cons(0, 1, 2). As a
result, experimenters need only worry about what
features to use, and not how to use them.

We then use the models Pr^a, PeHusK, PBUILD, and
Pongee to define a function score, which the search
procedure uses to rank derivations of incomplete and
complete parse trees. For each model, the corre-
sponding conditional probability is defined as usual:

p(a, b)
P(alb) = Ea'eA p(a', b)

For notational convenience, define q as follows

[PrAa(a]b) if a is an action from TAG
pCStmK(a[b) if a is an action from CHUNK

q(alb) = PBUILD(al b) if a is an action from BUILD
PcnEcK(alb) if a is an action from CHECK

Let deriv(T) = { a l , . . . ,an} be the derivation of a
parse T, where T is not necessarily complete, and
where each al is an action of some tree-building
procedure. By design, the tree-building procedures
guarantee that { a l , . . . , an} is the only derivation for
the parse T. Then the score of T is merely the prod-
uct of the conditional probabilities of the individual
actions in its derivation:

score(T) = H q(adbi)
a~ Ederiv(T)

where bi is the context in which ai was decided.

4 Search

The search heuristic at tempts to find the best parse
T*, defined as:

T* = a r g max score(T)
TGtrees(S)

where trees(S) are all the complete parses for an
input sentence S.

The heuristic employs a breadth-first search
(BFS) which does not explore the entire frontier,
but rather, explores only at most the top g scor-
ing incomplete parses in the frontier, and terminates
when it has found M complete parses, or when all
the hypotheses have been exhausted. Furthermore,
if { a l . . . a n } are the possible actions for a given
procedure on a derivation with context b, and they
are sorted in decreasing order according to q(ailb),
we only consider exploring those actions {al . . . am}
that hold most of the probability mass, where m is
defined as follows:

m

m = m a x E q(a, lb) < Q
i=1

and where Q is a threshold less than 1. The search
also uses a Tag Dictionary constructed from train-
ing data, described in (Ratnaparkhi, 1996), tha t re-
duces the number of actions explored by the tag-
ging model. Thus there are three parameters for the
search heuristic, namely K,M, and Q and all exper-
iments reported in this paper use K = 20, M = 20,
and Q = .951 Table 4 describes the top K BFS and
the semantics of the supporting functions.

It should be emphasized that if K > 1, the parser
does not commit to a single POS or chunk assign-
ment for the input sentence before building con-
stituent structure. All three of the passes described
in section 2 are integrated in the search, i.e., when
parsing a test sentence, the input to the second pass
consists of K of the best distinct POS tag assign-
ments for the input sentence. Likewise, the input
to the third pass consists of K of the best distinct
chunk and POS tag assignments for the input sen-
tence.

The top K BFS described above exploits the ob-
served property that the individual steps of correct
derivations tend to have high probabilities, and thus
avoids searching a large fraction of the search space.
Since, in practice, it only does a constant amount of
work to advance each step in a derivation, and since
derivation lengths are roughly proportional to the

1The parameters K,M, and Q were optimized o n

"held out" data separate from the training and test sets.

6

advance : d x V

i n s e r t : d x h
e x t r a c t : h) d

comple t ed : d

> d l . . . d m

> void

) {true,false}

M = 2 0
K = 2 0
Q = .95
C = <empty heap>
h0 =<input sentence>
whi le (I C l < M)

i f (Vi, hi i s empty)
t h e n b r e a k

/ * Applies relevant tree building procedure to d
and returns list of new derivations whose action
probabilities pass the threshold Q */
/* inserts d in heap h */
/* removes and returns derivation in h
with highest score */
/* returns true if and only if
d is a complete derivation */

/* Heap of completed parses */
/* hi contains derivations of length i */

i = max{i I hi i s non-empty}
sz = m i n (g , ihii)
f o r j = l t o sz

d l . . . d p = a d v a n c e (e x t r a c t (h l) , V)
f o r q = l to p

if (completed (dq))
then insert (dq, C)
else insert(dq, hi+l)

Table 4: Top K BFS Search Heuristic

Seconds

I I I I I

, li!
, l l ! i l l ,

0

 ::it
:ii i ,i!.,:

. . . : i
,! l i l i !)))I,
)! i '

• °

• o •

:'i:!"." : . : ' , I - ","
• i.,iI :o:
! ! I I ,
| l i : ' . " I | I : i
i ~ ' :

I

• o •

i ' l " I I f I I

10 20 30 40 50 60 70
Sentence Length

Figure 8: Observed running t ime of top K BFS on Section 23 of Penn Treebank WSJ, using one 167Mhz
UltraSPARC processor and 256MB RAM of a Sun Ultra Enterprise 4000.

sentence length, we would expect it to run in lin-
ear observed time with respect to sentence length.
Figure 8 confirms our assumptions about the linear
observed running time.

5 E x p e r i m e n t s

The maximum entropy parser was trained on sec-
tions 2 through 21 (roughly 40000 sentences) of
the Penn Treebank Wall St. Journal corpus, release
2 (Marcus, Santorini, and Marcinkiewicz, 1994), and
tested on section 23 (2416 sentences) for compar-
ison with other work. All trees were stripped of
their semantic tags (e.g., -LOC, -BNF, etc.), coref-
erence information(e.g., *-1), and quotation marks
(" and ' ') for both training and testing. The PAR-
SEVAL (Black and others, 1991) measures compare
a proposed parse P with the corresponding correct
treebank parse T as follows:

correct constituents in P
Recall =

constituents in T
correct constituents in P

Precision =
constituents in P

A constituent in P is "correct" if there exists a con-
stituent in T of the same label that spans the same
words. Table 5 shows results using the PARSEVAL
measures, as well as results using the slightly more
forgiving measures of (Collins, 1996) and (Mager-
man, 1995). Table 5 shows that the maximum en-
tropy parser performs better than the parsers pre-
sented in (Collins, 1996) and (Magerman, 1995) ~,
which have the best previously published parsing ac-
curacies on the Wall St. Journal domain.

It is often advantageous to produce the top N
parses instead of just the top 1, since additional in-
formation can be used in a secondary model that re-
orders the top N and hopefully improves the quality
of the top ranked parse. Suppose there exists a "per-
fect" reranking scheme that, for each sentence, magi-
cally picks the best parse from the top N parses pro-
duced by the maximum entropy parser, where the
best parse has the highest average precision and re-
call when compared to the treebank parse. The per-
formance of this "perfect" scheme is then an upper
bound on the performance of any reranking scheme
that might be used to reorder the top N parses. Fig-
ure 9 shows that the "perfect" scheme would achieve
roughly 93% precision and recall, which is a dra-
matic increase over the top 1 accuracy of 87% preci-
sion and 86% recall. Figure 10 shows that the "Ex-
act Match", which counts the percentage of times

2Results for SPATTER on section 23 are reported in
(Collins, 1996)

Parser Precision
Maximum Entropy ° 86.8%
Maximum Entropy* 87.5%

(Collins, 1996)* 85.7%
(Magerman, 1995)* 84.3%

Recall
85.6%
86.3%
85.3%
84.0%

Table 5: Results on 2416 sentences of section 23
(0 to 100 words in length) of the WSJ Treebank.
Evaluations marked with ~ ignore quotation marks.
Evaluations marked with * collapse the distinction
between ADVP and PRT, and ignore all punctuation.

the proposed parse P is identical (excluding POS
tags) to the treebank parse T, rises substantially
to about 53% from 30% when the "perfect" scheme
is applied. For this reason, research into reranking
schemes appears to be a promising step towards the
goal of improving parsing accuracy.

6 C o m p a r i s o n W i t h P r e v i o u s W o r k

The two parsers which have previously reported the
best accuracies on the Penn Treebank Wall St. Jour-
nal are the bigram parser described in (Collins, 1996)
and the SPATTER parser described in (Jelinek et
al., 1994; Magerman, 1995). The parser presented
here outperforms both the bigram parser and the
SPATTER parser, and uses different modelling tech-
nology and different information to drive its deci-
sions.

The bigram parser is a statistical CKY-style chart
parser, which uses cooccurrence statistics of head-
modifier pairs to find the best parse. The max-
imum entropy parser is a statistical shift-reduce
style parser that cannot always access head-modifier
pairs. For example, the checkcons(m,n) predicate
of the maximum entropy parser may use two words
such that neither is the intended head of the pro-
posed consituent that the CHECK procedure must
judge. And unlike the bigram parser, the maximum
entropy parser cannot use head word information
besides "flat" chunks in the right context.

The bigram parser uses a backed-off estimation
scheme that is customized for a particular task,
whereas the maximum entropy parser uses a gen-
eral purpose modelling technique. This allows the
maximum entropy parser to easily integrate vary-
ing kinds of features, such as those for punctua-
tion, whereas the bigram parser uses hand-crafted
punctuation rules. Furthermore, the customized es-
timation framework of the bigram parser must use
information that has been carefully selected for its
value, whereas the maximum entropy framework ro-

8

95

94

93

92

91

%Accuracy90

89

88

87

0

0 +

+

0
+

0 +
+

+

I I I

Precision O
Recall +

o O o O O O O O O O O O O O O
+ + + + + + + + + + +

+ +

85 L - - - - - - - - - - - - - - - - - - ~ - . . - - - - - - - - - - - - . . . - -
0 5 10 15 20

N

Figure 9: Precision & recall of a "perfect" reranking scheme for the top N parses of section 23 of the WSJ
Treebank, as a function of N. Evaluation ignores quotation marks.

55
53
51
49
47
45
43

% Accuracy~

37
35
33
31<
29
27
25

0

O

O
O

O
O

O

O O

I

O O O O O O O O O O O

I I I

5 10 15 20
N

Figure 10: Exact match of a "perfect" reranking scheme for the top N parses of section 23 of the WSJ
Treebank, as a function of N. Evaluation ignores quotation marks.

bustly integrates any kind of information, obviating
the need to screen it first.

The SPATTER parser is a history-based parser
that uses decision tree models to guide the opera-
tions of a few tree building procedures. It differs
from the maximum entropy parser in how it builds
trees and more critically, in how its decision trees
use information. The SPATTER decision trees use
predicates on word classes created with a statistical
clustering technique, whereas the maximum entropy
parser uses predicates that contain merely the words
themselves, and thus lacks the need for a (typically
expensive) word clustering procedure. Furthermore,
the top K BFS search heuristic appears to be much
simpler than the stack decoder algorithm outlined
in (Magerman, 1995).

77 C o n c l u s i o n

The maximum entropy parser presented here
achieves a parsing accuracy which exceeds the best
previously published results, and parses a test sen-
tence in linear observed time, with respect to the
sentence length. It uses simple and concisely speci-

• fled predicates which can added or modified quickly
with little human effort under the maximum entropy
framework. Lastly, this paper clearly demonstrates
that schemes for reranking the top 20 parses deserve
research effort since they could yield vastly better
accuracy results.

8 Acknowledgements
Many thanks to Mike Collins and Professor Mitch
Marcus from the University of Pennsylvania for their
helpful comments on this work.

R e f e r e n c e s

Berger, Adam, Stephen A. Della Pietra, and Vin-
cent J. Della Pietra. 1996. A Maximum Entropy
Approach to Natural Language Processing. Com-
putational Linguistics, 22(1):39-71.

Black, Ezra et al. 1991. A Procedure for Quan-
titatively Comparing the Syntactic Coverage of
English Grammars. In Proceedings of the Febru-
ary 1991 DARPA Speech and Natural Language
Workshop, pages 306-311.

Black, Ezra, Fred Jelinek, John Lafferty, David M.
Magerman, Robert Mercer, and Salim Roukos.
1993. Towards History-based Grammars: Using
Richer Models for Probabilistic Parsing. In Pro-
ceedings of the 31st Annual Meeting of the ACL,
Columbus, Ohio.

Collins, Michael John. 1996. A New Statistical
Parser Based on Bigram Lexical Dependencies.
In Proceedings of the 34th Annual Meeting of the
ACL.

Darroch, J. N. and D. Ratcliff. 1972. Generalized
Iterative Scaling for Log-Linear Models. The An-
nals of Mathematical Statistics, 43(5):1470-1480.

Jelinek, Fred, John Lafferty, David M. Magerman,
Robert Mercer, Adwait Ratnaparkhi, and Salim
Roukos. 1994. Decision Tree Parsing using a Hid-
den Derivational Model. In Proceedings of the Hu-
man Language Technology Workshop, pages 272-
277. ARPA.

Lau, Ray, Ronald Rosenfeld, and Salim Roukos.
1993. Adaptive Language Modeling Using The
Maximum Entropy Principle. In Proceedings of
the Human Language Technology Workshop, pages
108-113. ARPA.

Magerman, David M. 1995. Statistical Decision-
Tree Models for Parsing. In Proceedings of the
33rd Annual Meeting of the ACL.

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1994. Building a large
annotated corpus of English: the Penn Treebank.
Computational Linguistics, 19(2):313-330.

Ratnaparkhi, Adwait. 1996. A Maximum Entropy
Part of Speech Tagger. In Conference on Em-
pirical Methods in Natural Language Processing,
University of Pennsylvania, May 17-18.

Ratnaparkhi, Adwait. 1997. A Simple Introduction
to Maximum Entropy Models for Natural Lan-
guage Processing. Technical Report 97-08, Insti-
tute for Research in Cognitive Science, University
of Pennsylvania.

10

