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A b s t r a c t  

Our work addresses the integration of 
speech recognition and language processing 
for whole spoken dialogue systems. 

To filter ill-recognized words, we design 
an on-line computing of word confidence 
scores based on the recognizer output hy- 
pothesis. To infer as much information 
as possible from the retained sequence of 
words, we propose a bottom-up syntactico- 
semantic robust parsing relying on a lexi- 
calized tree grammar and on integrated re- 
pairing strategies. 

1 I n t r o d u c t i o n  

Spoken dialogue systems enable people to interact 
with computers using speech. However, a key chal- 
lenge for such interfaces is to couple successfully au- 
tomatic speech recognition (ASR) and natural lan- 
guage processing modules (NLP) given their limits. 

Several collaboration modalities between ASR and 
NLP have been investigated. On the one hand, 
the speech recognition task can benefit from linguis- 
tic decision to uncover the correct utterance, see 
(Rayner et al., 1994) among others. On the other 
hand, NLP components can be robust with respect 
to recognition errors. The straightforward approach 
is to be robust by focusing only on informative words 
(Lamel et al., 1995; Meteer and Rohlicek, 1994). By 
nature, it misses some existing information in the 
sentence and it can be misled in case of errors on 
informative words. A more controlled robustness is 
expected with a complete linguistic analysis (Young, 
1994; Hanrieder and GSrz, 1995; Dowding et al., 
1994). In a practical application, a dialogue module 
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can then handle interactive recovery, as illustrated 
by (Suhm, Myers, and Waibel, 1996). 

The current work attempts to repair misrecogni- 
tions by mobilising available acoustic cues and by 
using linguistic abstraction and syntactico-semantic 
predictions. We present a filtering method and a 
repairing parsing strategy which fit in a complete 
system architecture. 

An advantage of our approach is the use of a core 
module that is independent from any application. 

Another advantage, for real applications, is to be 
aware of the expected performances of the ASR sys- 
tems. Indeed, there are obstacles that prevent ASR 
systems to be fully reliable. In particular, the de- 
coding algorithms enforce models which do not ex- 
ploit all linguistic knowledge, mainly due to com- 
putational complexity. This hinders somehow the 
decoding so that the right solution is sometimes just 
not available. 

2 S y s t e m  a r c h i t e c t u r e  

The system architecture consists in a speech recog- 
nizer, a word confidence scoring module, a robust 
parsing module and higher modules -around a di- 
alogue module (Normand, Pernel, and Bacconnet, 
1997). 

The modules of the system articulate in a comple- 
mentary way. The scoring module goal is to provide 
word acoustic confidence scores to help the robust 
parser in its task. The parsing module takes the 
best recognition hypothesis. It attempts to repair 
recognition errors and transmits a semantic repre- 
sentation of the sentence to the dialogue module. 
It relies on a lexicalized tree grammar and on inte- 
grated repairing rules. They make use of the knowl- 
edge embedded in the lexical grammar and of can- 
didates present in the N-best hypothesis. We have 
studied its capacities to detect and predict missing 
elements and to select syntactically and semantically 
well-formed sentences. The robust parser needs con- 
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fidence scoring module to point out inserted and sub- 
sti tuted elements. 

The words identified as inserted or as substituted 
are marked but  the decision is laid upon the robust 
parsing or subsequent linguistic processes. More- 
over, falsely rejected words can give rise to deletion 
repairing procedures. The robust parsing strategy 
applies syntactic and semantic well-formedness con- 
straints. It  derives the meaning of the sentence out 
of available elements and furthermore predicts the 
missing elements required to meet the constraints. 
Whatever  the case, initially well-formed sentence or 
not, the parsing produces a usable analysis for the 
higher layers to perform the final interpretation or 
to trigger a repairing dialogue. 

3 W o r d  E r r o r s  F i l t e r i n g  

Inserted and substituted elements are a major  prob- 
lem as they are a source of misunderstanding. If 
not t reated early on in a spoken dialogue system, 
they weaken the dialogue interaction, caught be- 
tween running the risk of confusing the user with 
irrelevant interactions or annoying the user with 
repetitive confirmation checks. 

As parsing is not always able to reject ill- 
recognized sentences, especially when they remain 
well-formed, cross-checking is required between 
acoustic and linguistic information. Our method 
is to isolate errors according to a scoring criterion 
and then transmit  to the parsing suspected elements 
with the alternative acoustic candidates. They can 
be reactivated by the parsing if necessary, to achieve 
a complete analysis. 

3.1 S c o r i n g  M e t h o d  

A way to get a scoring criterion is to at tr ibute a 
recognition confidence score to each word in the best 
sentence hypothesis. 

A confidence score relates to the word being 
rightly recognized and not only to the word being 
acoustically close to an acoustic reference. It  nor- 
mally depends on the recognizer behaviour, the lan- 
guage to be recognized, and the application• For 
example (Rivlin, 1995) sees it as a normalisation of 
the phonemes acoustic scores and derives an exact 
estimation from a recognition corpus. We propose 
here a simple on-line computing of the word confi- 
dence score. It is not an exact measure but  it has 
minimal knowledge requirements. The scoring re- 
lies on the observation of concurrent hypothesis of 
the recognizer and their associated acoustic scores. 
We have tested it with the N-best sentence hypothe- 
sis but  lattice and word graph could be investigated 
further. 

An initial score for each word in the best sen- 
tence is taken either from the word acoustic score 
or from the sentence score, distributed uniformly on 
the words. The score we have used here is the global 
sentence acoustic score. This initial word score is re- 
evaluated on the basis of concordances between the 
different recognition hypothesis. The  major  param- 
eter for score estimation is the alignment between 
the word in the best hypothesis and the words in 

t h e  other hypothesis. In our case this alignment is 
achieved by a dynamic programming method 1 

For each N-best, an alignment value is defined 
from the words alignment. It disfavours especially 
the recidivist occurrences of a word candidate. Let 
wi be the i th word in the best hypothesis, the align- 
ment value at rank n is: 

when wi is aligned with itself 
- 1  when wi is not aligned 

Aln(wi) = - r  when wi is aligned for the r th 
t ime with a given word 

(1)  

The re-evaluation of a word score will derive from 
this word alignment value. 

Each N-best gives rise to a re-evaluation of the 
current word score. This re-evaluation decomposes 
into two factors, a re-scoring potential V and a re- 
scoring amplitude AS. Let Sn(wi) be the score of 
the word wi having observed N-best hypothesis up 
to rank n: 

= + (2) 

Where Vn(wi) is the potential  for rescoring the 
word wi according to hypothesis Hn - the  sentence 
hypothesis at rank n and ASh is the rescoring am- 
plitude at rank n. 

The first factor of the re-evaluation is the po- 
tential, defined in equation 3. It  is based on the 
alignments and indicates the type of increase or de- 
crease that  a word deserves. A context effect is intro- 
duced in the potential in the form of penalties and 
bonus which are proportional to the direct neigh- 
bouts alignment values (see equation 4), so that:  

V=(wi) = Aln(wi) + ~ 6Aln(wj, wi) (3) 

cr+Aln(wj) if Al , (wj)  > 0 
6Aln(wj,wi) = a-Aln(wj)  if Al , (wj)  < 0 (4) 

1As no additional phonetic or temporal information 
• " S is used to do the alignment, there might be seldom case 

of bad alignment. The problem should not arise with 
lattice or word graph as they keep temporal information• 
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Where Al , (wi )  is the alignment value of word wi 
between the first-best hypothesis H1 and the N-best 
hypothesis H , .  ~Aln(wj,  wi) is the context effect of 
word wj on word wi (equation 4). Practically this is 
either a positive contribution if wj is well aligned 
or a negative contribution if wj is badly aligned. 
We consider context effect only from the immediate 
neighbours. 

The second factor of the re-evaluation is the am- 
plitude (cf. equation 2). The amplitude is the same 
for every word at a given rank. It is based on the 
n th hypothesis score and the rank so that  the ampli- 
tude decreases with the rank and with the relative 
score difference between H1 and H~. It expresses the 
rescoring power of hypothesis Hn and is calculated 
iteratively as: 

ASr, = ASh_i(1 - S(H~) - S ( H ~ )  
IS(H~)I - ~) (5) 

Where # is a linear slope that  ensures a minimal 
decrease. S ( H , )  is the global acoustic score of the 
hypothesis H . .  

The scoring stops in the case of the amplitude 
reaching zero. Fig 1 and 2 show evolution of the 
word score across N-best re-evaluation. 

3.2 F i l t e r i n g  a p p l i c a t i o n  

Once the word confidence scores are available, the 
filtering still needs a threshold to point out would- 
be errors. It is set on-line as the maximum score 
that  different typical cases of words to be eliminated 
could reach. It  is computed in the same time as 
word confidence scores. We consider the worst case 
score of several empirical cases independent from the 
two recognizer we tested. One of those cases is a 
word that  would be not-aligned 80% of the time and 
always surrounded by aligned neighbours. 

When the suspect words have been spotted, it re- 
mains to be decided whether they are substitutions 
or insertions. We distinguish them thanks to seg- 
mental cues and to local word variations between 
competitive hypothesis. Practically, the alignments 
previously calculated are scanned ; if the two bor- 
dering neighbours of a word w are once adjacent and 
well aligned in an hypothesis, w is marked as an in- 
sertion. 

3.3 E v a l u a t i o n  

We have tested the word scoring module, with the in- 
corporated filtering, on errors produced by two exist- 
ing ASR systems from SRI and Cambridge Univer- 
sity. The former, Nuance Communication recognizer 
system is constrained by a Context Free Grammar.  

u C t e r e d :  DO YOU HAVE SOME RED ARMCHAIRS 
HI : DO YOU HAVE TWO RED COMPUTERS 
H2: DO YOU HAVE TWO RED ARMCHAIRS 
H3: DO YOU HAVE THOSE RED COMPUTERS 
H4: DO YOU HAVE THE RED COMPUTERS 
H5: DO YOU HAVE THOSE RED ARMCHAIRS 
H6: DO YOU HAVE THE RED ARMCHAIRS 
H7: DO YOU HAVE SOME RED COMPUTERS 

Table 1: N-best hypothesis for the sentence "do you 
have some red armchairs" 

do you have ~xne red amlcha~'s 
200  , , , ++] rank 2 . . . .  

rank 3 . . . . . .  
. . . . . . . . . . . . . . . . . . . .  ~ r ank  4 - -  

150  . . . . . . . . . . . . . . . . . . . . . .  - , . .  ~+. r ank  6 . . . . .  

. . . . . . . . . .  ....2.-....::::.: 

1 ~  : . . . .  / ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

,{,,~, /,.v "...:'> 
\h., , ,"  . / /  ' , )  

',,\.,,/ 
\ / 

do ~ have 
l 

tWO red computers 
woa:l In the fket b ~ t  

Figure 1: word scores across N-best ranks for the 
best hypothesis "do you have two red computers" 

The latter, Abbot,  uses an n-gram model (backed off 
tr igram model) 2 

The application domain is taken from the COVEN 
z project (Normand and Tromp, 1996) , described 
on http:/ /chinon.thomson-csf . fr /coven/ .  COVEN 
(COllaborative Virtual ENvironments) addresses 
the technical and design-level requirements of 
Virtual-based multi-participant collaborative activ- 
ities in professional and citizen-oriented domains. 
Among the grounding testbed applications, an in- 
terior design application is being developed, which 
provides the background of the work described in 
this article. A typical interior design scenario deals 
with composition of pieces of furniture, equipment 
and decoration in an office room by several partici- 

~The training corpus for the trigram was generated 
artificially by the context free grammar of the first recog- 
nizer mentioned. 15% of the testset is out of the Nuance 
Context Free Grammar. The sampling rate of acoustic 
models are 8 kHz for Nuance and 16 kHz for Abbot. 
The Nuance communication recognizer system exploits 
phonemes in context. Abbot uses a neural network to 
model standard phonemes. 

3COVEN is a European project of the ACTS Pro- 
gramme (Advanced Communications Technologies and 
Services). 
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pants, within the limits of a common budget. Ele- 
ments of the design are taken from a set of possible 
furniture, equipment and decoration objects, with 
variable at tr ibutes in value domains. The user may 
ask information to the system which provides guid- 
ance for the user decision. 

The evaluation results of the speech recognizers 
are given with others results in table 5. Here are 
two examples of scoring and filtering. Figure 1 
shows the evolution across seven N-best of an ill- 
recognized sentence score profile. At the end, the 
two ill-recognized words (some and armchairs) are 
identified as errors, they are classified as substitu- 
tions according to their type of alignment in the dif- 
ferent N-best. The  recognition hypothesis are dis- 
played in table 1 (the recognizer is Nuance). 

In the second example table 2 (from Abbot), the 
word is is inserted, but  not in all N-best hypothesis. 
The  confidence scores succeed in pointing is as ill- 
recognized, the alignment considerations will then 
classify it as an insertion. 

uttered: CAN YOU GIVE ME THE BUDGET 
HI: CAN YOU GIVE ME IS A BUDGET 
H2: CAM YOU GIVE ME IS THE BUDGET 
H3: CAN YOU GIVE ME A BUDGET 
H4: CAN YOU GIVE ME IT BUDGET 
H5: CAN YOU GIVE IT THE BUDGET 
H6: CAN YOU GIVE ME THE BUDGET 
H7: CAN YOU GIVE ME THESE BUDGET 

Table 2: N-best hypothesis for the sentence "can you 
give me the budget" 

ited performances for the filtering taken alone and 
we suspect that  even with future improvements, it 
will remain limited. A bet ter  filtering can only be 
achieved if it is informed by other knowledge sources. 
Performances of filtering, when coupled with the ro- 
bust parsing, are indeed much more satisfactory. 

4 R e p a i r i n g  P a r s i n g  S t r a t e g y  

The aim of the robust parser presented here is to 
build a semantic representation needed by higher 
layers of the system while faced with possible ill- 
formed sentences. The parsing itself is led by a Lex- 
icalized Tree Grammar  (Schabes, Abeill~, and Joshi, 
1988). It relies on a set of elementary trees (de- 
fined in the lexicon) which have at least one termi- 
nal symbol on its frontier, called the anchor. Trees 
can be combined through tw o  simple operations : 
substitution 4 and furcation (de Smedt and Kempen, 
1990). Those operations are theoretically equivalent 
to Tree Adjoining Grammar  operations. However an 
original property of our Lexicaiized Tree Grammar  
is to integrate a set of semantic operations which 
lay down additional constraints. The parser han- 
dles semantic features, at tached to the trees, and 
propagates them according to specific rules (Rous- 
sel, 1996). The result is a semantic representation 
built synchronously to the syntactical tree. 
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Figure 2: word scores across N-best ranks for the 
best hypothesis "can you give me is a budget" 

First evaluation of the filtering hints that  it may 
be a good guidance but  not a sufficient criterion: 
some parameter  settings, such as the threshold, re- 
main problematic. Table 5 displays rather lim- 

Figure 3: elementary trees and attached semantic 
features for the sentence "give me more information 
about the company" 

In figures 3 and 4, the heads of the trees are stan- 
dard syntactic categories, the star symbol on the 

4It should be borne in mind that the term substitution 
when speaking of Tree Grammars has nothing to do with 
the term substitution that refers to a recognition error 
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right or left of the head indicates an auxiliary tree 
that  will combine with a compatible tree ; a X* head 
symbol indicates a tree which combines with a node 
of category X on its right, a *X node combines with 
a node X on its left. Nodes X0, X1, or more gener- 
ally Xn, are substitution sites, they are awaiting a 
tree whose head symbol is X. Substitution sites bear 
syntactic and semantic constraints on their possi- 
ble substitutors. Here, the semantic constraints are 
made visible in the node symbol (e.g. N0-PERSON 
means the substi tutor of this node must be of cate- 
gory N - n o u n -  and must possess a semantic feature 
:PERSON). 

The parsing reveals, through linguistic anomalies, 
errors tha t  wouldn't  be spotted efficiently by acous- 
tic criteria. The linguistic context allows to enrich 

• and complete the analysis in case of an error, either 
detected during the parsing as a linguistic anomaly 
or signalled previously from confidence scores. 

Actually, the robust parsing strategy articulates 
around a single parser, which is used iteratively ac- 
cording to the anomalies encountered. Three passes 
can each provide analysis when anomalies are de- 
tected -for  correct sentences, the first pass is suffi- 
cient. Each pass will in turn modify the result of the 
previous pass and hand it back to the parser. 

In the first pass, lexical items are first matched 
with their corresponding elementary tree in the lex- 
icon. Concurrent trees for one item give rise to par- 
allel concurrent branches of parsing, but  they are 
taken into account in a local chart parsing. 

For example the verb want  is associated in the 
COVEN s lexicon with two entries, one for the in- 
finitive construction and one for the transitive con- 
struction. As preposition to exists in the lexicon, a 
sentence in which the words want  and to appear calls 
two lexicon matching, thus two parsing branches. 
Figure 4 displays the trees involved. The parser 
will select the right matching along the syntactico- 
semantic operations thanks to expectations of sub- 
sti tution sites. 

The first pass includes a first feature of robust- 
ness since unreliable words signalled by the filtering 
as probable substitutions are represented by an au- 
tomatically generated "joker" tree. A joker tree is 
an overspecified tree tha t  cumulates semantic fea- 
tures from different candidates whose elementary 
tree share the same structure 6. Several alternative 
joker trees are generated when word candidates be- 
long to different categories. Initially all semantic 
features in an overspecified joker tree are marked 

5cf. section 3.2 
8joker trees are similar to elementary tree. They can 

also be defined manually to fit identified cases 

P 

NQ-PBtS(~,I kaNT NI-ENI'IIY 

I 
SP 

TO ~-EXTITY 

[ :ACTION = :REQUEST ] 

:L.QC = :D.ST 

P 
A 

Y 

I~IT TO PC-TEXS£-I/f 

C :ACTIO~I = :REQLI~T 

Figure 4: concurrent elementary trees and attached 
semantic features for the words want  to 

as uncertain, not to confuse the higher levels, then, 
during the parsing the semantic features mobilised 
for the tree operations are relieved from their  uncer- 
tain status. To avoid a heavy combinatorial  search, 
directly operations to combine two adjacent jokers 
are not at tempted.  

Figure 5: analysis of "give me is a budget" ,  recovery 
from a substitution 

Concerning insertions, the parser checks whether 
a local analysis is possible without a word suspected 
to be inserted, if so, the decision is made to eliminate 
the word, if not, the word is considered as substitu- 
tion, and processed as described above. This is not 
an absolute criterion, in particular optional words 
falsely considered to be insertions by the filtering 
are not recovered. 

The repairing capacities at this stage apply for in- 
stance to the case mentioned table 2. In sentence 
"can you give me is a budget",  the word a is marked 
as a substitution (cf. 3.2). It  triggers the genera- 
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tion of joker trees, the candidates a, the, this, these 
are represented by a single joker tree while it, in 
the 4 ~h best hypothesis, involves a different joker 
tree - i t  is in fact its own tree, but  with semantic 
features marked as uncertain. The branch of pars- 
ing containing this joker is eliminated on syntactic 
grounds, whereas the first branch of parsing turns 
into a complete analysis (figure 5). The word is 
which is marked as a possible insertion is confirmed 
in its status and definitely eliminated. 

The second pass aims at recovering from would-be 
deleted words by re-inserting expected co-occurring 
words. We use knowledge about  co-occurrences 
implicitly described in some elementary trees: el- 
ementary trees defined for more than one anchor 
are now being selected even if all their anchors are 
not present in the recognized sentence. It  is how- 
ever checked whether the anchors appear in given 
competitive recognition hypothesis at compatible 
positions 7. In the following example in table 3 the 
recognizer (here, Abbot) has recognized the sentence 
whom is this chair are too light instead of the actual 
ut terance whom is this chair chosen by. 

uttered: WHOM IS THIS CHAIR CHOSEN BY 
HI: WHON IS THIS CHAIR ARE TOO LIGHT 
H2: WHOM IS THIS CHAIR TO AN BY 
H3: WHOM IS THIS CHAIR TO AN WALL I 
H4: WHOM IS THIS CHAIR CHOSEN IT 
HS: WHOM IS THIS CHAIR TO AN WALL MIND 
H6: WHOM IS THIS CHAIR TO AN WALL MY 
HT: WHOM IS THIS CHAIR TO AN BY A 

Table 3: N-best hypothesis for the sentence "whom 
is this chair chosen by" 

The sequence are ~oo light is spotted by the fil- 
tering as a probable substitution. At pass one, the 
parser doesn' t  succeed in putt ing together the ele- 
mentary  trees which span the whole sentence. 

Now, in pass two it is observed that  in the sure 
part  of the sentence whom is this chair, two words 
whom and be are t h e  beginning of several multi- 
anchor elementary trees. The aligned candidates 
with the sequence are too light allow to select only 
one multi-anchor tree WHOM-BE-N1-CHOSEN-BY. This 
provides a complete analysis. 

The second pass enables a lexical recovery. The 
knowledge exploited here about  dependencies be- 
tween words at arbi t rary distance can operate par- 
ticularly efficiently with an n-gram driven recog- 
nizer. Indeed, the co-occurrences captured by an 
n-gram model suffer from a limited scope and an 
adjacency condition. 

~The position is figured out from the hypothesis align- 
ment, see section 3.1 

Figure 6: analysis of "whom is this chair chosen by"; 
the origninal sentence is recovered 

The third pass differs from previous passes ; in- 
stead of initiating the recovery from the lexical el- 
ements at hand, it summons predictions from the 
grammatical expectations. 

This pass is meant to detect the other errors and 
complete the analysis with underspecified elements. 

Each anomaly revealed by the parsing has the 
trees around it examined to determine whether it 
is possible to restore a local well-formedness by in- 
serting a tree. 

Pat terns of anomaly that  fits in this case are de- 
fined in a compact way thanks to the general tree 
types used in the grammar. There are about  twenty 
patterns, each of them is made to insert the required 
tree, in the form of an underspecified joker tree. This 
type of joker tree has a full syntactic structure but 
undefined semantic features: some semantic features 
can be added along the syntactico semantic opera- 
tions. 

The third pass can chose to ignore joker trees in- 
troduced in the first pass. This allows to correct 
irrelevant matching of joker in the first pass. This 
occurs when two words are substi tuted for a single 
word, or when an insertion is classified as a substi- 
tution. 

u t t e r e d :  CAN YOU GIVE ME HOP.E INFORMATION ABOUT TItE COMPANY 
Sl : CAN YOU GIVE ME MORE INFORMATION THE COMPANY 
H2: CAN YOU GIVE ME MORE INFORMATION BY THE COMPANY 
H3: CAN YOU GIVE ME NORE INFORMATION THAT COMPANY 
H4: CAN YOU GIVE ME MORE INFORMATION ABOUT SECRETARY 
H5: CAN YOU GIVE ME MORE INFORMATION THE OVER COMPANY 
H6: CAN YOU GIVE ME MORE INFORMATION BOW TO THE COMPANY 
H7: CAN YOU GIVE ME MORE INFORMATION ONE THE COMPANY 

Table 4: N-best hypothesis for the sentence "can you 
give me more information about  the company" 

Example table 4 stands for a typical omission re- 
covery. The word about was deleted so that  neither 
of the first passes can span the entire sentence. The 
third pass succeeds in inferring an analysis by in- 
serting a generic prepositional tree that  meets the 
syntactic and semantic expectations (see figure 7). 
Yet the recovery lets the information introduced by 
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Well 
Recognized 
Sentences 

Ill 
Recognized 
Sentences 

correct preserving 

wrong filtering weakly 
recovered by the robust parsing 
Correct filtering 

partial filtering 

wrong filtering, sentence 
rightly rejected by the parsing 
wrong filtering, sentence 
falsely analysed as well formed 
wrong filtering, sentence 
analysed through the robust parsing 

N,,ance Abbot 
32 % 62 % 

27,5% [ 6,5% 

11% 8,5 % 

8,5% 5% 

0% 5% 

17 % 6,5 % 

4% 6,5% 

i00 % i00 % {l 

Correct 
Interpretation 

Potentially Correct 
Interpretation 
Rejection 

False 
Interpretation 

Table 5: results on filtering and subsequent repairing strategy 

Figure 7: analysis of "give me more information the 
company", recovery from an omission 

1 st pass 1 st to 2 nd pass 1 st to 3 ra pass 

] 32,5 ms. 44 ms. 113 ms. 

Table 6: comparison of average cpu time required 
for different parsing options 

the preposition undefined. However a look at com- 
patible aligned words in the N-best hypothesis can 
instanciate the joker once an analysis is found. 

5 E v a l u a t i o n  

The parser has been tested on a 200 words 
application s . The robust parsing runs in real time on 
an SGI Indigos2 Impact (R4400 250 MHz). Table 6 
shows the processing performances for each parsing 
pass. 

Results on the repairing capacities according to 
the filtering behaviour are presented in table 5. 

"Weakly recovered" means that all the informa- 
tion is present in the semantic representation, but 
part of it may be marked as uncertain with o ther  
parasite information (see figure 5 for an example). 
"Potentially correct interpretation" means that a 
valid semantic representation has been reached with 

SThe application task and the recognizer systems are 
described section 3.3. 

some biased information. This bias might be ignored 
or detected by the higher level modules. The last 
two lines of the table distinguish between two kinds 
of wrongly filtered sentence: the first appear well- 
formed to the parser -there is no way to recover from 
those-, the second contain anomalies detected by the 
parser -there might be some way to repair or reject 
those ones. It can be observed that the approach 
is basically non-destructive toward well-recognized 
sentences. There is a theoretical case that would re- 
sult in a loss of information: the false rejection of 
an optional word. But it didn't show up. For ill- 
recognized sentences, at least 27% are fully recov- 
ered, for Nuance as well as for Abbot (this concerns 
line 3 of table 5). In both cases too, a little less than 
50% appear difficult to recover, given the current 
filtering (last two lines of the table). 
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6 C o n c l u s i o n  

The results enlighten the repairing capacities of a 
couple filtering module/robust parsing module. In 
addition this couple presents some original desirable 
features that we intend to push further. First, al- 
though the parser belongs to the family of robust 
parsers -since it can process ill-formed sentence- it 
is still able to reject a subset of ill-formed sentences, 
which may be produced by a recognizer. Second, 
thanks to the lexical recovery from word candidates 
in the N-best hypothesis, the spoken input can be 
decoded further. 

The scoring module can be seen as achieving not 
so much a filtering than a narrowing of the search 
space of recognition candidates. However, the ap- 
proach has limitations: the parser cannot handle a 
large number of candidates so that the number of 
N-best must be limited and hence the correct candi- 
dates sometimes missed. 

Moreover, spurious hypothesis generated along 
the passes are still hard to eliminate. This sug- 
gests the need for cross-checking with other knowl- 
edge sources, like statistical cues derived from text 
corpora or from recognition errors corpora. 

To sum up, our work described an integration of 
speech recognition and language processing which is 
independent from a given recognition system. The 
basic idea was to make use of available acoustic in- 
formation in order to point out a limited set of words 
to suspect --especially inserted words- and to exploit 
the potential of linguistic knowledge in order to re- 
pair the best sentence hypothesis. It can serve as a 
basis for many more developments. 
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