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A b s t r a c t  

In this paper we report on an unsupervised ap- 
proach to learning Categorial Grammar (CG) 
lexicons. The learner is provided with a set 
of possible lexical CG categories, the forward 
and backward application rules of CG and un- 
marked positive only corpora. Using the cate- 
gories and rules, the sentences from the corpus 
are probabilistically parsed. The parses and the 
history of previously parsed sentences are used 
to build a lexicon and annotate the corpus. We 
report the results from experiments on a num- 
ber of small generated corpora, that  contain ex- 
amples from subsets of the English language. 
These show that  the system is able to gener- 
ate reasonable lexicons and provide accurately 
parsed corpora in the process. We also discuss 
ways in which the approach can be scaled up to 
deal with larger and more diverse corpora. 

1 I n t r o d u c t i o n  

In this paper we discuss a potential solution to 
two problems in Natural Language Processing 
(NLP), using a combination of statistical and 
symbolic machine learning techniques. The first 
problem is learning the syntactic roles, or cat- 
egories, of words o f  a language i.e. learning a 
lexicon. Secondly, we discuss a method of an- 
notating a corpus with parses. 

The aim is to learn Categorial Grammar 
(CG) lexicons, starting from a set of lexical cat- 
egories, the functional application rules of CG 
and an unannotated corpus of positive exam- 
ples. The CG formalism (discussed in Section 
2) is chosen because it assigns distinct categories 
to words of different types, and the categories 
describe the exact syntactic role each word can 
play in a sentence. 

This problem is similar to the unsupervised 
part of speech tagging work of, for example, 

Brill (Brill, 1997) and Kupiec (Kupiec, 1992). 
In Brill's work a lexicon containing the parts of 
speech available to each word is provided and 
a simple tagger attaches a complex tag to each 
word in the corpus, which represents all the pos- 
sible tags that  word can have. Transformation 
rules are then learned which use the context of 
a word to determine which simple tag it should 
be assigned. The results are good, generally 
achieving around 95% accuracy on large corpora 
such as the Penn Treebank. 

Kupiec (Kupiec, 1992) uses an unsupervised 
version of the Baum-Welch algorithm, which is 
a way of using examples to iteratively estimate 
the probabilities of a Hidden Markov Model for 
part  of speech tagging. Instead of supplying 
a lexicon, he places the words in equivalence 
classes. Words in the same equivalence class 
must take one of a specific set of parts of speech. 
This improves the accuracy of this algorithm to 
about the same level as Brill's approach. 

In both  cases, the learner is provided with a 
large amount  of background knowledge - either 
a complete lexicon or set of equivalence classes. 
In the approach presented here, the most that  
is provided is a small partial lexicon. In fact 
the system learns the lexicon. 

The second problem - annotating the corpus 
- is solved because of the approach we use to 
learn the lexicon. The system uses parsing to 
determine which are the correct lexical entries 
for a word, thus annotating the corpus with the 
parse derivations (also providing less probable 
parses if desired). An example of another ap- 
proach to doing this is the Fidditch parser of 
Hindle (Hindle, 1983) (based on the determin- 
istic parser of Marcus (Marcus, 1980)), which 
was used to annotate the Penn Treebank (Mar- 
cus et al., 1993). However, instead of learning 
the lexicon, a complete grammar and lexicon 
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must be supplied to the Fidditch parser. 

Our work also relates to CG induction, which 
has been a t tempted  by a number of people. Os- 
borne (Osborne, 1997) has an algorithm that. 
learns a grammar for sequences of part-of-speech 
tags from a tagged corpora, using the Minimum 
Description Length (MDL) principle - a well- 
defined form of compression. While this is a 
supervised setting of the problem, the use of 
the more formal approach to compression is of 
interest for future work. Also, results of 97% 
coverage are impressive, even though the prob- 
lem is rather simpler. Kanazawa (Kanazawa, 
1994) and Buszkowski (Buszkowski, 1987) use a 
unification based approach with a corpus anno- 
tated with semantic structure, which in CG is a 
strong indicator of the syntactic structure. Un- 
fortunately, they do not present results of exper- 
iments on natural  language corpora and again 
the approach is essentially supervised. 

Two unsupervised approaches to learning 
CGs are presented by Adriaans (Adriaans, 
1992) and Solomon (Solomon, 1991). Adriaans, 
describes a purely symbolic method that  uses 
the context of words to define their category. 
An oracle is required for the learner to test its 
hypotheses, thus providing negative evidence. 
This would seem to be awkward from a engi- 
neering view point i.e. how one could provide 
an oracle to achieve this, and implausible from 
a psychological point of view, as humans do not 
seem to receive such evidence (Pinker, 1990). 
Unfortunately, again no results on natural  lan- 
guage corpora seem to be available. 

Solomon's approach (Solomon, 1991) uses 
unannotated corpora, to build lexicons for sim- 
ple CG. He uses a simple corpora of sentences 
from children's books, with a slightly ad hoc and 
non-incremental, heuristic approach to develop- 
ing categories for words. The results show that  
a wide range of categories can be learned, but  
the current algorithm, as the author admits, is 
probably too naive to scale up to working on 
full corpora. No results on the coverage of the 
CGs learned are provided. 

In Section 3 we discuss our learner. In Sec- 
tion 4 we describe experiments on three corpora 
containing examples of a subset of English and 
Section 5 contains the results, which are encour- 
aging with respect to both problems. Finally, 
in Section 6, we compare the results with the 

systems mentioned above and discuss ways the 
system can be expanded and larger scale exper- 
iments may be carried out. Next, however, we 
describe Categorial Grammar. 

2 C a t e g o r i a l  G r a m m a r  

Categorial Grammar (CG) (Wood, 1993; Steed- 
man, 1993) provides a functional approach to 
lexicalised grammar, and so, can be thought  of 
as defining a syntactic calculus. Below we de- 
scribe the basic (AB) CG, although in future 
it will be necessary to pursue a more flexible 
version of the formalism. 

There is a set of atomic categories in CG, 
which are usually nouns (n), noun phrases (np) 
and sentences is). It is then possible to build up 
complex categories using the two slash operators 
"/" and "\". I fA and B are categories then A/B 
is a category and A\B is a category. With basic 
CG there are just  two rules for combining cat- 
egories: the forward (FA) and backward (BA) 
.functional application rules. Following Steed- 
man's  notation (Steedman, 1993) these are: 

X / Y  Y ~ X (FA) 
Y X \ Y  ~ X (BA) 

Therefore, for an intransitive verb like "run" the 
complex category is s \np and for a transitive 
verb like "take" it is (s\np)/np.  In Figure 1 
the parse derivation for "John ate the apple" is 

John ate the apple 

np (s~np)/np np/n n 
FA 

np 
FA 

presented. 

s~np 
BA 

s 

Figure 1: A Example Parse in Pure CG 

The CG described above has been shown 
to be weakly equivalent to context-free phrase 
structure grammars (Bar-Hillel et al., 1964). 
While such expressive power covers a large 
amount of natural  language structure, it has 
been suggested that  a more flexible and expres- 
sive formalism may capture natural language 
more accurately (Wood, 1993; Steedman, 1993). 
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This has led to some distinct branches of re- 
search into usefully extending CG, which will 
be investigated in the future. 

CG has at least the following advantages for 
our task. 

• Learning the lexicon and the grammar is 
one task. 

• The syntax directly corresponds to the se- 
mantics. 

The first of these is vital for the work pre- 
sented here. Because the syntactic structure is 
defined by the complex categories assigned to 
the words, it is not necessary to have separate 
learning procedures for the lexicon and for the 
grammar rules. Instead, it is just  one procedure 
for learning the lexical assignments to words. 

Secondly, the syntactic structure in CG par- 
allels the semantic structure, which allows an 
elegant interaction between the two. While 
this feature of CG is not used in the cur- 
rent system, it could be used in the future to 
add semantic background knowledge to aid the 
learner (e.g. Buszkowski's discovery procedures 
(Buszkowski, 1987)). 

3 T h e  L e a r n e r  

The system we have developed for learning lex- 
icons and assigning parses to unannotated sen- 
tences is shown diagrammatically in Figure 2. 
In the following sections we explain the learning 
setting and the learning procedure respectively. 

3.1 T h e  L e a r n i n g  S e t t i n g  

The input to the learning setting has five parts: 
the corpus, the lexicon, the CG rules, the set 
of legal categories and a probabilistic parser, 
which are discussed below. 

T h e  C o r p u s  The corpus is a set of unanno- 
tated positive examples represented in Prolog 
as facts containing a list of words e.g. 

ex ( [mary, l o v e d ,  a,  computer]  ) .  

T h e  Le x i con  The lexicon is a set of Prolog 
facts of the form: 

lex(Word, Category, Frequency). 

Where Word is a word, Category is a Prolog 
representation of the CG category assigned to 
that word and Frequency is the number of times 
this category has been assigned to this word up 
to the current point in the learning process. 

T h e  R u l e s  The CG functional application 
rules (see Section 2) are supplied to the learner. 
Extra rules may be added in future for fuller 
grammatical  coverage. 

T h e  C a t e g o r i e s  The learner has a complete 
set of the categories that  can be assigned to a 
word in the lexicon. The complete set is shown 
in Table 1. 

T h e  P a r s e r  The system employs a proba- 
bilistic chart parser, which calculates the N 
most probable parses, where N is the beam set 
by the user. The probability of a word being 
assigned a category is based on the relative fre- 
quency, which is calculated from the current lex- 
icon. This probability is smoothed (for words 
that  have not been given fixed categories prior 
to execution) to allow the possibility that  the 
word may appear as other categories. For all 
categories for which the word has not appeared, 
i t ' is  given a frequency of one. This is partic- 
ularly useful for new words, as it ensures the 
category of a word is determined by its context. 

Each non-lexical edge in the chart has a prob- 
ability calculated by multiplying the probabili- 
ties of the two edges that  are combined to form 
it. Edges between two vertices are not added if 
there axe N edges labelled with the same cate- 
gory and a higher probability, between the same 
two vertices (if one has a lower probability it 
is replaced). Also, for efficiency, edges are not 
added between vertices if there is an edge al- 
ready in place with a much higher probability. 
The chart in Figure 3 shows examples of edges 
that  would not be added. The top half of the 
chart shows one parse and the bot tom half an- 
other. If N was set to 1 then the dashed edge 
spanning all the vertices would not be added, 
as it has a lower probability than the other s 
edge covering the same vertices. Similarly, the 
dashed edge between the first and third vertices 
would not be added, as the probability of the n 
is so much lower than the probability of the np. 

It is important  that  the parser is efficient, as 
it is used on every example and each word in an 
example may be assigned any category. As will 
be seen it is also used extensively in selecting 
the best parses. In future we hope to inves- 
tigate the possibility of using more restricted 
parsing techniques, e.g. deterministic parsing 
technology such as that  described by Marcus 
(Marcus, 1980), to increase efficiency and allow 
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Syntactic Role CG Category Example 
Sentence 
Noun 
Noun Phrase 
Intransitive Verb 
Transitive Verb 
Ditransitive Verb 
Sentential Complement  Verb 
Determiner 
Adjective 
Auxiliary Verb 
That  complementizer 
Preposition 

s 

n 

np 
s\np 
(s\np)/np 
((s\np)/np)/np 
(s\np)/s 
np/n 
n/n 
(s\.p)/(s\.p) 
np/s 
(n \n) /np  
((s\np)\(s\np))/np 

the dog ran 
dog 
the dog 
ran 
kicked 
gave 
believe 
the 
hungry 
does 
that 
to 

Table 1: The categories available to the learner 

(/~Co~us~ Example .~[ Fh'obabilisfic I-- ~te~ories~ 

~ exicon 
~ odifier 

[ 

Figure 2: A Diagram of the Structure of the Learner 

larger scale experiments. 

3.2 T h e  L e a r n i n g  P r o c e d u r e  

Having described the various components with 
which the learner is provided, we now describe 
how they are used in the learning procedure. 

P a r s i n g  t h e  E x a m p l e s  Examples are taken 
from the corpus one at a time and parsed. Each 
example is stored with the group of parses gen- 
erated for it, so they can be efficiently accessed 
in future. The parse that  is selected (see below) 
as the current correct parse is maintained at the 
head of this group. The head parse contributes 
information to the lexicon and annotates the 

corpus. The parses are also used extensively 
for the efficiency of the parse selection module, 
as will be described below. When the parser 
fails to find an analysis of an example, either 
because it is ungrammatical,  or because of the 
incompleteness of the coverage of the grammar, 
the system skips to the next example. 

T h e  P a r s e  S e l e c t o r  Once an example has 
been parsed, the N most probable parses are 
considered in turn to determine which can be 
used to make the most compressive lexicon (by 
a given measure), following the compression as 
learning approach of, for example, Wolff (Wolff, 
1987). The current size measure for the lexicon 
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s - 0 . 5 1 2  

D~\ / \ \  -- / / \  . . . .  / / r  
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" " ~. n - 0 . 0 0 0 8  s u p  - 0 . 0 0 9  ~ s s • 

s - 0 . 0 0 0 9  

Figure 3: Example chart showing edge pruning 

is the sum of the sizes of the categories for each 
lexical entry. The size of a category is the num- 
ber of atomic categories within it. However, it 
is not enough to look at what a parse would 
add to the lexicon. The effect of changing the 
lexicon on the parses of previous examples must 
be considered. Changes in the frequency of as- 
signments can cause the probabilities of previ- 
ous parses to change and thus correct mistakes 
made earlier when the evidence from the lex- 
icon was too weak to assign the correct parse. 
This correction is affected by reparsing previous 
examples that may be affected by the addition 
of the new parse to the lexicon. Not reparsing 
those examples that will not be affected, saves 
a great deal of time. In this way a new lexicon 
is built from the reparsed examples for each hy- 
pothesised parse of the current example. The 
parse leading to the most compressive of these 
is chosen. The amount of reparsing is also re- 
duced by using stored parse information. 

This may appear an expensive way of deter- 
mining which parse to select, but it enables the 
system to calculate the most compressive lexi- 
con and keep an up-to-date annotation for the 
corpus. Also, the chart parser works in poly- 
nomial time and it is possible to do significant 
pruning, as outlined, so few sentences need to 
be reparsed each time. However, in the future 
we will look at ways of determining which parse 
to select that  do not require complete reparsing. 

Lex icon  Modi f i ca t ion  The final stage takes 
the current lexicon and replaces it with the lex- 
icon built with the selected parse. The whole 
process is repeated until all the examples have 

been parsed. The final lexicon is left after the 
final modification. The most probable annota- 
tion of the corpus is the set of top-most parses 
after the final parse selection. 

4 E x p e r i m e n t s  

Experiments were performed on three different 
corpora all containing only positive examples. 
Experiments were performed with and without 
a partial lexicon of closed-class words (words 
of categories with a finite number of members) 
with fixed categories and probabilities, e.g. de- 
terminers and prepositions. All experiments 
were carried out on a SGI Origin 2000. 

E x p e r i m e n t s  on C o r p u s  1 The first corpus 
was built from a context-free grammar (CFG) ,  
using a simple random generation algorithm. 
The CFG (shown in Figure 4) covers a range of 
simple declarative sentences with intransitive, 
transitive and ditransitive verbs and with ad- 
jectives. The lexicon of the CFG contained 39 
words with an example of noun-verb ambiguity. 
The corpus consisted of 500 such sentences (Fig- 
ure 5 shows examples). As the size of the lexicon 
was small and there was only a small amount 
of ambiguity, it was unnecessary to supply the 
partial lexicon, but the experiment was carried 
out for comparison. We also performed an ex- 
periment on 100 unseen examples to see how 
accurately they were parsed with the learned 
lexicon. The results were manually verified to 
determine how many sentences were parsed cor- 
rectly. 

S ~ NP VP VP --4 Vbar 
Vbar ~ IV Vbar ~ TV NP 
Vbar ~ DV NP NP NP ~ PN 

NP ~ Nbar Nbar --4 Det N 
N ~ A d j  N 

PN ~ john Det --+ the 
N ~ boy Adj --~ small 

IV ~ ran TV ~ timed 
DV ~ gave 

Figure 4: The CFG used to generate Corpus 1 
with example lexical entries 

E x p e r i m e n t s  on Corpus  2 The second cor- 
pus was generated in the same way, but us- 
ing extra rules (see Figure 6) to include prepo- 
sitions, thus making the fragment of English 
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ex ( [mary,  ran]  ) .  
e x ( [ j o h n ,  gave ,  j o h n ,  a ,  b o y ] ) .  
e x ( [ a ,  dog,  c a l l e d ,  t h e ,  f i s h ,  a ,  s m a l l ,  
u g l y ,  d e s k ] ) .  

Figure 5: Examples from Corpus 1 

more complicated. The lexicon used for gener- 
ating the corpus was larger - 44 words in total. 
Again 500 examples were generated (see Figure 
7 for examples) and experiments were carried 
out both with and without the partial lexicon. 
Again we performed an experiment on 100 un- 
seen examples to see how accurately they are 
parsed. 

NP --+ Nbar PP VP -4 Vbar PP 
PP --4 P NP 

P ~ o n  

Figure 6: The extra rules required for generat- 
ing Corpus 2 with example lexical entries 

ex([the, fish, with, a, elephant, gave, 
banks, a, dog, with, a, bigger, statue]). 
ex([a, elephant, with, jim, 
walked, on, a, desk]). 
ex([the, girl, kissed, the, computer, 
on, a, fish]). 

Figure 7: Examples from Corpus 2 

E x p e r i m e n t s  on  C o r p u s  3 ( T h e  LLL Cor-  
pus)  Finally, we performed experiments using 
the LLL corpus (Kazakov et al., 1998). This 
is a corpus of generated sentences for a sub- 
stantial fragment of English. It is annotated 
with a certain amount of semantic information, 
which was ignored. The corpus contains 554 
sentences, however, because of the restricted set 
of categories and CG rules, we limited the ex- 
periments to the 157 declarative sentences (895 
words, with 152 unique words) in the corpus. 
Examples are shown in Figure 8. While our CG 
rules can handle a reasonable variety of declar- 
ative sentences it is by no means complete, not 
allowing any movement (e.g. topicalised sen- 
tences) or even any adverbs yet. This was, un- 
surprisingly, something of a limitation. Also, 
this corpus is very small and sparse, making 
learning difficult. It was determined to experi- 

ment to see how well the system performed un- 
der these conditions. Again we performed ex- 
periments with and without fixed closed-class 
words. Due to the lack of examples it was not 
possible to perform a test on unseen examples, 
which need to be pursued in the future. 

ex([no, manager, in, sandy, 
reads, every, machine]). 
ex([the, manual, isnt, continuing]). 
ex([no, telephone, sees, the, things]) . 

Figure 8: Examples from Corpus 3 

All experiments were performed with the 
minimum number of categories needed to cover 
the corpus, so for example, in the experiments 
on Corpus 1 the categories for prepositions were 
not available to the parser. This will obviously 
affect the speed with which the learner per- 
forms. Also, the parser was restricted to two 
possible parses in each case. 

5 R e s u l t s  

In Table 2 we report the results of these ex- 
periments. The CCW Preset column indicates 
whether the closed-class words were provided 
or not. The lexicon accuracy column is a mea- 
sure, calculated by manual analysis, of the per- 
centage of lexical entries i.e. entries that have 
word-category pairs that can plausibly be ac- 
cepted as existing in English. This should be 
taken together with the parse accuracy, which is 
the percentage of correctly parsed examples i.e. 
a linguistically correct syntactic analysis. The 

Corpus CCW Lexicc 
Preset Acc. (~ 

× 100 
~/ 100 
~/ 100 
x 14.7 

x/ 77.7 

Lexicon Parse Exec. 
(%) Acc. (%) Time (s) 

100 
100 
100 
0.6 
58.9 

5297 
625 

10524 
164151 

361 

Table 2: Accuracies and timings for the different 
learning experiments 

results for the first two corpora are extremely 
encouraging with 100% accuracy in both mea- 
sures. While these experiments are only on rel- 
atively simple corpora, these results strongly 
suggest that the approach can be effective. It 
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should be noted that  any experiment on cor- 
pus 2 without the closed-class words being set 
did not terminate, as the sentences in that  cor- 
pus are significantly longer and each word may 
be a large number of categories. It is therefore 
clear, that  setting the closed-class words greatly 
increases speed and that  we need to consider 
methods of relieving the strain on the parser if 
the approach is to be useful on more complex 
corpora. 

The results with the LLL corpus are also en- 
couraging in part. A lexical accuracy of 77.7% 
and a parse accuracy of nearly 60% (note this 
measure of accuracy is strict) on such a small 
sparse corpus is a good result and analysis sug- 
gests most errors were made due to the small 
coverage of the grammar - especially not al- 
lowing any movement. Errors also suggest that  
adding some further linguistic constraints - for 
example not allowing words to be assigned the 
basic category s - and strengthening the com- 
pression heuristic may provide improvements. 
It was these problems, along with the sparse- 
ness of the corpus, that  led to the poor results 
with the LLL corpus without preset words. 

Table 3 shows predictably good results for 
parsing the test sets with the learned lexicons. 

Corpus Closed-Class Parse Accuracy (%) 

1 x 100 
1 , /  1oo 
2 x 100 
2 x/ 100 

Table 3: Unseen example parsing accuracy 

6 C o n c l u s i o n s  

We have presented an unsupervised learner that  
is able to both learn CG lexicons and annotate 
natural language corpora, with less background 
knowledge than other systems in the literature. 
Results from preliminary experiments are en- 
couraging with respect to both  problems, par- 
ticularly as the system appears to be reasonably 
effective on small, sparse corpora. It is encour- 
aging that  where errors arose this was often due 
only to incomplete background knowledge. 

The results presented are encouraging with 
respect to the work that  has already been men- 
tioned - 100~ can clearly not be improved upon 

and compares very favourable with the systems 
mentioned in Section 1. However, it is also clear 
that  this was achieved on unrealistically sim- 
ple corpora and when the system was used on 
the more diverse LLL corpus it did not fair as 
well. However, given the fact that  the problem 
setting discussed here is somewhat harder than 
that  a t tempted  by other systems and the lack 
of linguistic background knowledge supplied, it 
is hoped that  it will be possible to use the ap- 
proach on wider coverage corpora more effec- 
tively in the future. 

The use of CGs to solve the problem provides 
an elegant way of using syntactic information 
to constrain the learning problem and provides 
the opportuni ty for expansion to a full g r am-  
mar learning system in the future by the devel- 
opment of a category hypothesizer. It is hoped 
that  this will be part  of future work. 

.We also hope to carry out experiments on 
larger and more diverse corpora, as the corpora 
used thus far are too small to be a an exacting 
test for the approach. We need to expand the 
grammar to cover more linguistic phenomena to 
achieve this, as well as considering other mea- 
sures for compressing the lexicon (e.g. using 
an MDL-based approach). Larger experiments 
will lead to a need for increased efficiency in the 
parsing and reparsing processes. This could be 
done by considering deterministic parsing ap- 
proaches (Marcus, 1980), or perhaps shallower 
syntactic analysis. 

While many extensions may be considered for 
this work, the evidence thus far suggests that  
the approach outlined in this paper is effective 
and efficient for these natural language learning 
tasks. 
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