
THE ROLE OF SYNTAX IN INFORMATION EXTRACTION

Ralph Grishman
C o m p u t e r Sc ience D e p a r t m e n t

New York U n i v e r s i t y

715 B r o a d w a y , 7 th F l o o r

New York, N Y 10003

g r i s h m a n © c s , n y u . e d u

I N T R O D U C T I O N

Our group at New York University has developed a
number of information extraction systems over the
past decade. In particular, we have been participants
in the Message Understanding Conferences (MUCs)
since MUC-1. During this time, while experimenting
with many aspects of system design, we have retained
a basic approach in which information extraction in-
volves a phase of full syntactic analysis, followed by
a semantic analysis of the syntactic structure [2]. Be-
cause we have a good, broad-coverage English gram-
mar and a moderately effective method for recovering
from parse failures, this approach held us in fairly
good stead.

However, we have recently found ourselves at a dis-
advantage with respect to groups which performed
more local pattern matching, in three regards:

1. o u r s y s t e m s w e r e q u i t e s l o w

In processing the language as a whole, our system
is operating with only relatively weak semantic
preferences. As a result, the process of building
a global syntactic analysis involves a large and
relatively unconstrained search space and is con-
sequently quite expensive. In contrast, pattern
matching systems assemble structure "bottom-
up" and only in the face of compelling syntactic
or semantic evidence, in a (nearly) deterministic
manner.

Speed was particularly an issue for MUC-6 be-
cause of the relatively short time frame (1 month
for training). With a slow system, which can
analyze only a few sentences per minute, it is
possible to perform only one or at best two runs
per day over the full training corpus, severely
limiting debugging.

2. g l o b a l p a r s i n g c o n s i d e r a t i o n s s o m e t i m e s
l e d t o l o c a l e r r o r s

Our system was designed to generate a full sen-
tence parse if at all possible. If not, it attempted
a parse covering the largest substring of the sen-
tence which it could. This global goal sometimes
led to incorrect local choices of analyses; an ana-
lyzer which trusted local decisions could in many
cases have done better.

. a d d i n g s y n t a c t i c c o n s t r u c t s n e e d e d for a
n e w s c e n a r i o w a s h a r d

Having a broad-coverage,
linguistically-principled grammar meant that rel-
atively few additions were needed when moving
to a new scenario. However, when specialized
constructs did have to be added, the task was rel-
atively difficult, since these constructs had to be
integrated into a large and quite complex gram-
mar.

We considered carefully whether these difficulties
might be readily overcome using an approach which
was still based on a comprehensive syntactic gram-
mar. It appeared plausible, although not certain,
that problems (1) and (2) could be overcome within
such an approach, by adopting a strategy of c o n s e r -

v a t i v e parsing. A conservative parser would perform
a reduction only if there was strong (usually, local)
syntactic evidence or strong semantic support. In
particular, chunking parsers, which built up small
chunks using syntactic criteria and then assembled
larger structures only if they were semantically li-
censed, might provide a suitable candidate.

In any case, problem (3) still loomed. Our Holy
Grail, like that of many groups, is to eventually get
the computational linguist out of the loop in adapting
an information extraction system for a new scenario.
This will be difficult, however, if the scenario requires
the addition of some grammatical construct, albeit
minor. It would require us to organize the grammar
in such a way that limited additions could be made

139

by non-specialists without having to understand the
entire grammar - - again, not a simple task.

In order to better understand the proper role of syn-
tax analysis, we decided to participate in the most
recent MUC, MUC-6 (held in the fall of 1995), using
a quite different approach, often referred to as "pat-
tern matching", which has become increasingly pop-
ular among information extraction groups. In par-
ticular, we carefully studied the FASTUS system of
Hobbs et al. [1], who have clearly and eloquently set
forth the advantages of this approach. This approach
can be viewed as a form of conservative parsing, al-
though the high-level structures which are created are
not explicitly syntactic.

T H E S Y S T E M

The goal of information extraction is to analyze a text
(an article / a message) and to fill a template with
information about a specified type of event. In the
case of MUC-6, the task (the "scenario") was to iden-
tify instances of executives being hired or fired from
corporations3

Most of the stages of processing are performed one
sentence at a time. First, each word in a sentence
is looked up in a large English dictionary, Comlex
Syntax, which provides syntactic information about
each word. The system then performs several stages
of pattern matching. The first stages deal primar-
ily with name recognition - - people's names, orga-
nization names, geographic names, and names of ex-
ecutive positions ("Executive Vice President for Re-
call and Precision"). The next stages deal with noun
and verb groups. Basically, a noun group consists of
a noun and its left modifiers: "the first five para-
graphs", "the yellow brick road"; such groupings
can generally be identified from syntactic information
alone. A verb group consists of a verb and its related
auxiliaries: "sleeps", "is sleeping", "has been sleep-
ing", etc. All of these stages are basically scenario-
independent (except for the recognition of executive
positions, which was added for this scenario).

Next come the scenario-specific patterns. These in-
clude, in particular, patterns to recognize the scenario
events, such as "Smith became president of General
Motors", "Smith retired as president of General Mo-
tors", and "Smith succeeded Jones as president of
General Motors". When such a pattern is matched, a

1 For a description of MUC-6, see the papers "Design of the
MUC-6 Evaluation" and "Overview of the Results of the MUC-
6 Evaluation" in this volume; for a more detailed description of
the NYU system, see our paper "The NYU System for MUC-
6 or Where's the Syntax?" in Proc. o] the Sixth Message
Understanding Conference, Morgan Kaufmann, 1996.

corresponding event structure is generated, recording
the type of event (for this scenario, hiring or firing)
and the people and companies involved.

The next stage of processing is reference resolution.
At this stage, pronouns and definite noun phrases
which refer back to previously mentioned people or
organizations are linked to these antecedents.

When all the sentences of an article have been an-
alyzed, a final stage of processing assembles the in-
formation and generates a template in the format re-
quired for MUC.

The resulting system did quite well. With a limited
development time (four weeks for this MUC) we were
able to develop a system which obtained a recall of
47% and a precision of 70% (with a combined F mea-
sure of 56.4) on the test corpus. This was the best F
score on the scenario template task, although several
other systems (mostly with similar architectures) got
scores that were not significantly lower.

T H E ROLE OF S Y N T A X

Although our system, and systems like it, are char-
acterized as "pattern matching" systems, they really
are doing a form of parsing: they analyze the sen-
tence into a nested constituent structure. They differ
from more conventional parsing systems (such as our
earlier system) in

• not seeking a full-sentence analysis: they only
build as much structure as is needed for the infor-
mation extraction task, including selected clauses
relevant to the scenario

parsing conservatively and deterministically:
they only build structures which have a high
chance of being correct, either because of syn-
tactic clues (for noun groups) or semantic clues
(for clause structures); as a result, they are much
faster than traditional parsers

* using semantic patterns for the final stage(s) of
analysis

Overall, we profited from the use of the pattern-
matching approach; our analyzer was considerably
faster, and we avoided some of the parsing errors
which result from trying to obtain complete sen-
tence analyses with a syntactic grammar. On the
other hand, we also experienced first-hand some of the
shortcomings of the semantic pattern approach. Syn-
tax analysis provides two main benefits: it provides
generalizations of linguistic structure across different
semantic relations (for example, that the structure of
a main clause is basically the same whether the verb is

140

"to succeed" or "to fire"), and it captures paraphras-
tic relations between different syntactic structures (for
example, between "X succeeds Y", "Y was succeeded
by X", and "Y, who succeeded X"). These benefits are
lost when we encode individual semantic structures.
In particular, in our system, we had to separately en-
code the active, passive, relative, reduced relative, etc.
patterns for each semantic structure. These issues are
hardly new; they have been well known at least since
the syntactic grammar vs. semantic grammar contro-
versies of the 1970's.

How, then, to gain the benefits of clause-level syn-
tax within the context of a partial parsing system?
The approach we have adopted has been to intro-
duce clause level patterns which are expanded by
metarules. 2

As a simple example of a clause-le4el pattern, con-
sider

(defclausepattern runs
"np-sem(C-person) vg(C-run)

np-sem(C-company):
person-at=l .attr ibutes ,
verb-at=2.attributes,
company-at=3.attributes"

when-run)

This specifies a clause with a subject of class C-
person, a verb of class C-run (which includes "run"
and "head"), and an object of class C-company. 3
This is expanded into patterns for the active clause
("Fred runs IBM"), the passive clause ("IBM is run
by Fred."), relative clauses ("Fred, who runs IBM,
..." and "IBM, which is headed by Fred, ..."), re-
duced relative clauses ("IBM, headed by Fred, ...")
and conjoined verb phrases ("... and runs IBM", "and
is run by Fred"). The expanded patterns also include
pattern elements for sentence modifiers, so that they
can analyze sentences such as "Fred, who last year
ran IBM, ...".

Using d e f c l a n s e p a t t e r n reduced the number of
patterns required and, at the same time, slightly im-
proved coverage because - - when we had been ex-
panding patterns by hand - - we had not included all
expansions in all cases.

The d e f c l a u s e p a t t e r n procedure performs a rudi-
mentary syntactic analysis of the input. In our exam-

2 T h e s e have some k inship to the m e t a r u l e s of G P S G , which
e x p a n d a smal l se t of p roduc t ions into a larger se t involving
the different clause-level structures .

3It also specif ies that the at tr ibutes of these three con-
s t i t uen t s are to be bound to the variables p e r s o n - a t , v e r b - a t ,
and c o m p a n y - a t , a n d that the procedure when- run is to be in-
voked when this pattern is matched .

pie, it determines that np-sem(C-person) is the sub-
ject, vg(C-run) is the verb, and np-sem(C-company)
is the object. This is a prerequisite for generating the
various restructurings, such as the passive. We in-
tend in the near future to expand d e : f c l a u s e p a t t e r n
to handle (parse) a richer set of patterns, including
both sentence modifiers and a wider range of comple-
ments. In this way the power of clause-level syntax is
provided to the pattern writer, without requiring the
pattern writer to keep these details explicitly in mind.

The use of clause-level syntax to generate syntactic
variants of a semantic pattern is even more important
if we look ahead to the time when such patterns will be
entered by users rather than computational linguists.
We can expect a computational linguist to consider all
syntactic variants, although it may be a small burden;
we cannot expect the same of a typical user.

We expect that users would enter patterns by ex-
ample, and would answer queries to create variants
of the initial pattern. We have just begun to create
such an interface, which allows a user to begin the
process of pattern creation by entering an example
and the correspoding event structure to be generated.
The example is analyzed using the low-level patterns
(such as the name and noun group patterns) and then
translated into a clause-level pattern. The user can
then manipulate the pattern, generalizing pattern el-
ements and dropping some pattern elements. Using
defclausepatVern, the resulting pattern is then an-
alyzed and its clause-level syntactic variants are gen-
erated. Though our initial tests are promising, a great
deal of work will still be required on this interface to
provide the full flexibility needed for creating a wide
range of patterns.

Our work has indicated the ways in which we can
continue to obtain the benefits of syntax analysis
along with the performance benefits of the pattern
matching approach. While we no longer have a mono-
lithic grammar, we are still able to take advantage of
the syntactic regularities of both noun phrases and
clauses. Noun group syntax remains explicit, as one
phase of pattern matching. Clause syntax is now uti-
lized in the metarules for defining patterns and in
the rules which analyze example sentences to produce
patterns.

Acknowledgements
The development of our language analysis software
and our participation in the MUCs has been sup-
ported by the Advanced Research Projects Agency
under a series of contracts. This work is currently
supported under Contract 94-FI57900-000 from the

141

Office of Research and Development and under Con-
tract DABT63-93-C-0058 from the Department of the
Army.

References

[1] D. Appelt, J. Hobbs, J. Bear, D. Israel,
M. Kameyama, and M. Tyson. SRI: Description
of the JV-FASTUS System used for MUC-5. In
Proc. Fifth Message Understanding Conf. (MUC-
5), Baltimore, MD, August 1993. Morgan Kauf-
mann.

[2] Ralph Grishman and John Sterling. New York
University: Description of the PROTEUS System
as used for MUC-5. In Proc. Fifth Message Un-
derstanding Conf. (MUC-5), Baltimore, MD, Au-
gust 1993. Morgan Kaufmann.

142

