
PACLIC 28

!93

Partial Case-Marking in Japanese Stripping/Sluicing:
A Dynamic Syntax Account

Tohru Seraku
Hankuk University of Foreign Studies

81, Oedae-ro, Cheoin-gu, Yongin-si, Gyeonggi-do
449-791, Korea

seraku@hufs.ac.kr

Abstract

This article presents novel data on partial case-
marking in Japanese stripping/sluicing: only the
final NP in multiple stripping/sluicing may lack
a case particle. These data challenge previous
works that assign radically distinct structures to
stripping/sluicing depending on whether or not
case-marking is involved. These case-marking
patterns are reducible to incremental growth of
semantic representation, formalised in Dynamic
Syntax: each NP is parsed at an ‘unfixed’ node,
and this structural uncertainty must be resolved
before another unfixed node is introduced.

1 Introduction

There is a growing body of research on ellipsis in
Japanese (Hiraiwa & Ishihara 2012 and references
therein). Stripping is a relatively understudied type
of elliptical construction (Fukaya 2007, Fukaya &
Hoji 2003, Fukui & Sakai 2003, Sakai 2000; see
also Hankamer & Sag 1976). As shown in (1)B,
stripping consists of the NP Mary and the copula
da, where case-marking of Mary is optional.

(1) A: Tom-ga ringo-o tabe-ta-yo.
 T-NOM apple-ACC eat-PAST-SFP
 ‘Tom ate apples.’

B: Iya, Mary(-ga) da.
no M(-NOM) COP
‘No, Mary.’ (= ‘No, Mary ate apples.’)

Japanese also allows “multiple stripping.” That is,
the pre-copula part may involve more than one NP:

(2) A: Tom-ga ringo-o tabe-ta-yo.
T-NOM apple-ACC eat-PAST-SFP
‘Tom ate apples.’

B: Iya, Mary-ga nashi-o da.
no M-NOM pear-ACC COP
‘No, Mary, pears.’ (= ‘No, Mary ate pears.’)

The most elaborated analysis of stripping is found
in Fukaya (2007), the main claim being that case-
marked and case-less stripping must be structurally
distinguished. According to Fukaya, movement is
relevant only to case-marked stripping.1
 What has not been noted in previous studies is
that when there are multiple NPs in stripping, only
the final NP may be case-less (see Section 4 for
details). Compare (2)B with (3)B, where the final
NP nashi (= ‘pear’) may be case-less, but not the
non-final NP Mary.2

(3) A: Tom-ga ringo-o tabe-ta-yo.

T-NOM apple-ACC eat-PAST-SFP
‘Tom ate apples.’

B: Iya, Mary*(-ga) nashi da.
no M(-NOM) pear COP
‘No, Mary, pears.’ (= ‘No, Mary ate pears.’)

1 This non-uniform analysis is based on the observation
that only case-marked stripping is sensitive to “islands”
(Fukaya 2007). Seraku (2013) shows that our account
captures the island-(in)sensitivity patterns of stripping
by means of the ‘LINK’ mechanism (Cann et al. 2005).
2 For some speakers, acceptability slightly drops with
the string Mary-ga nashi da, but what is essential is that
it is much more acceptable than the string Mary nashi-o
da and the string Mary nashi da. The same type of
remark also applies to the data in Sections 4 and 5.

Copyright 2014 by Tohru Seraku
28th Pacific Asia Conference on Language, Information and Computation pages 93–100

PACLIC 28

!94

This partial case-marking phenomenon raises two
problems for previous works. First, (3)B manifests
case-marked and case-less stripping at the same
time; that is, the single string contains the case-
marked NP Mary-ga and the case-less NP nashi. It
is thus not obvious how (3)B may be handled by
the past non-uniform account that posits radically
distinct structures depending on whether or not an
NP in stripping is case-marked. Second, even if the
first issue is sidestepped by stipulating a uniform
syntactic structure for the two types of stripping,
the question still remains of why only the final
focus may lack a case particle.
 The aim of this article is to show that the two
recalcitrant puzzles are solved in a framework that
directly reflects the incrementality of processing a
string online, as modelled in Dynamic Syntax (DS)
(Cann et al. 2005, Kempson et al. 2001, 2011).
 Section 2 sets out the DS framework. Section 3
offers a unified analysis of stripping, and Section 4
deals with multiple stripping. Section 5 points out
that the case-marking patterns of stripping are also
found in sluicing, demonstrating that these sluicing
data are amenable to our uniform analysis. Finally,
Section 6 sums up the main results of this paper.

2 Dynamic Syntax (DS)

DS is a model of “competence,” defined as a set of
constraints on how to build an interpretation on the
basis of incremental, word-by-word parsing online
(Cann et al. 2005, Kempson et al 2001, 2011).3 In
the DS view of comprehension, the parser takes a
string of words left-to-right and gradually builds
an interpretation (represented as a semantic tree)
without positing an independent level of syntactic
structure. Syntax within DS is thus no more than a
set of constraints on how to construct a semantic
tree in real time.
 DS semantic trees are binary-branching, where a
right node is inhabited by a functor and a left node
by an argument. Each node, if fully developed, is
decorated with a semantic content and its semantic
type. For instance, the parse of Tom decorates an
argument node with the content Tom' and the type
e, as in Tom' : e. Each node, if not fully developed,
is decorated with requirements. The node to be
decorated with Tom' : e is initially marked with ?e,

3 DS also models language production with the same
machinery as used for language comprehension (Howes
2012 and references therein).

which requires that the node will be decorated with
the type e.
 DS trees are progressively updated. The starting
point is a root node with the requirement ?t, which
requires that this node will be propositional. This
initial state is defined as an AXIOM (see (5)). Once
a root node is set out, it is subsequently updated by
running lexical actions (triggered by the parse of a
lexical item) or optionally running general actions.
 An essential example of general actions is the
introduction of an “unfixed” node, a node whose
structural position is initially underspecified and
will be resolved at a later point. Of note is LOCAL
*ADJUNCTION, which introduces a locally-unfixed
node decorated with the requirement ?e.4
 For an illustration, consider how a semantic tree
is built incrementally by parsing (4) left-to-right.

(4) Tom-ga hashi-tta.

T-NOM run-PAST
‘Tom ran.’

An initial state is the AXIOM (5), where ?t requires
that this node will be decorated with a type-t (i.e.
propositional) content. This is then updated to (6)
by performing LOCAL *ADJUNCTION. This general
action introduces an unfixed node; the positional
uncertainty is expressed by a dashed line.

(5) AXIOM

?t

(6) LOCAL *ADJUNCTION

?t

?e

The unfixed node is decorated by the parse of Tom,
triggering the actions to annotate the node with the
content Tom' and the type e, as in (7). At this stage,
the node is still unfixed, and it is the parse of the
nominative case particle ga that fixes the structural
underspecification, marking it as a subject node
(i.e. the type-e node immediately dominated by the
root node). The result of this resolution process is
visually expressed in (8), where the dashed line has
become a solid one.

4 Seraku (2013) argues that a type-e unfixed node is
induced by LOCAL *ADJUNCTION alone in Japanese.

PACLIC 28

!95

(7) Parsing Tom
?t

Tom' : e

(8) Parsing Tom-ga

?t

Tom' : e

What comes next is hashi (= ‘run’). Since Japanese
is fully pro-drop, it is assumed that verbs project a
propositional structure with argument slots. In the
case of the intransitive verb hashi, it constructs a
propositional structure where the subject argument
is decorated with a place-holding meta-variable U.

(9) Output structure of parsing hashi

?t

U : e hashi' : e→t

In (8), however, a subject node has already been
created, and the argument slot provided by hashi
collapses with this node. This is harmless since the
argument slot is annotated with a meta-variable, a
type of formula which is commensurate with any
specified formula. Setting aside the tense suffix ta
(see Cann 2011 and Seraku 2013 for a DS account
of tense), the parse of hashi updates (8) into (10).

(10) Parsing Tom-ga hashi

?t

Tom' : e hashi' : e→t

Finally, functional application and type deduction
take place. This process is modelled as the general
action ELIMINATION. The tree (11) is a final state,
representing the interpretation of the string (4).

(11) ELIMINATION

hashi'(Tom') : t

Tom' : e hashi' : e→t

 DS trees are “well-formed” iff no requirements
are left in a tree, as in the tree (11). Furthermore, a
string is “grammatical” iff there exists a sequence
of tree updates from the AXIOM to a well-formed
tree state (Cann et al. 2007).

3 A Uniform Account of Stripping

Building on Seraku’s (2013) analysis of Japanese
clefts, this section articulates a uniform account of
case-marked and case-less stripping.
 Firstly, we shall consider how the case-marked
stripping (12)B (ignoring iya (= ‘no’)) is mapped
onto a DS semantic tree incrementally.

(12) A: Mary-ga hashi-tta-yo.

M-NOM run-PAST-SFP
‘Mary ran.’

 B: Iya, Tom-ga da.
no T-NOM COP
‘No, Tom.’ (= ‘No, Tom ran.’)

Starting with the AXIOM (5), the parse of (12)B up
to Tom-ga leads to the tree (8). The next element in
(12)B is the copula da. Seraku (2013) argues that
da is a type-t pro-form, which posits a type-t meta-
variable to be replaced with a propositional content.

(13) Parsing Tom-ga da

U : t

Tom' : e

U is a type-t meta-variable. This tree state triggers
the “re-use” of a previously-built type-t structure.
Note that we have parsed the antecedent (12)A. In
particular, when hashi (= ‘run’) was processed, a
propositional structure with a subject slot was built.
This is copied onto the present tree, updating (13)
into (14), where the subject slot collapses with the
node decorated with Tom' : e.

(14) Re-use of a previous structure

U : t

Tom' : e hashi' : e→t

Finally, the parser runs ELIMINATION to clean up
the tree, and the final state (15) correctly represents
the interpretation of the stripping (12)B relative to
the antecedent (12)A: ‘No, Tom ran.’

(15) ELIMINATION

hashi'(Tom') : t

Tom' : e hashi' : e→t

PACLIC 28

!96

 Let us turn to the case-less stripping (16)B. With
the uniform nature of our account, a tree-update
proceeds identically until Tom is parsed (see (7)).

(16) A: Mary-ga hashi-tta-yo.

M-NOM run-PAST-SFP
‘Mary ran.’

 B: Iya, Tom da.
no T COP
‘No, Tom.’ (= ‘No, Tom ran.’)

In (16), Tom is case-less, and thus the tree-update
proceeds without resolving the unfixed node at this
stage. The next expression is the copula da, which
provides a type-t meta-variable, which triggers the
“re-use” of the previous structure built by the parse
of hashi in the antecedent.

(17) Re-use of a previous structure

U : t

Tom' : e V : e hashi' : e→t

In (17), the node for Tom is unfixed. In general, an
unfixed node may be merged with a fixed node of
the same type. This structural merger is formulated
as the general action UNIFICATION, which updates
the tree (17) into (18).

(18) UNIFICATION

U : t

Tom' : e hashi' : e→t

The unification process has fixed the node for Tom
as a subject node. ELIMINATION outputs the final
state (19), which is identical to (15), the tree for the
case-marked stripping (12)B. This makes sure that
the case-less stripping (16)B is truth-conditionally
equivalent to the case-marked stripping (12)B.

(19) ELIMINATION

hashi'(Tom') : t

Tom' : e hashi' : e→t

 This section has developed a uniform account
of case-marked and case-less stripping in the DS
setting. The two types of stripping are mapped to
the same tree, their difference being captured in
terms of how a semantic tree is updated:

⋅ In case-marked stripping, an unfixed node is
fixed lexically by a case particle.

⋅ In case-less stripping, it is fixed non-lexically
by the general action UNIFICATION.

 Let us close the present section by clarifying the
notion of “focus.” The NP in stripping is assumed
to receive a focus (see Arregi 2010 and Merchant
2004). In DS, “focus” is not a primitive concept,
but it emerges as an outcome of incremental tree
growth (Cann et al. 2005). In stripping, the NP
assigns a content value to an argument variable
posited by a predicate in a presupposition clause.
This saturation process evokes a focus effect as a
result of incremental tree update (Seraku 2013).

4 Multiple Stripping

This section shows that our uniform treatment of
stripping explains various types of data on multiple
stripping data.
 Within DS, each node is uniquely identified with
respect to the other nodes in a tree (Blackburn &
Meyer-Viol 1994). If multiple nodes are unfixed
with respect to the same node, they will not be
distinguishable. Thus, if supposedly distinct nodes
are unfixed relative to the same node, they will
lead to inconsistency in the node description.

(20) Unique-unfixed-node Constraint

If supposedly distinct nodes are unfixed with
respect to the same node at a time, the node
description becomes inconsistent.

This restriction is not a stipulation but a corollary
of the tree logic (Blackburn & Meyer-Viol 1994).
So, it plays a role in explaining linguistic puzzles
cross-linguistically (Chatzikyriakidis & Kempson
2011, Gibson 2012).
 Note that if two attempts to build a node with a
different formula are possible only if the formulae
are fully commensurate. In such a case, there will
only be one such node. Consider UNIFICATION. In
(18), the node decorated with the meta-variable V
successfully merges with the node decorated with
the formula Tom’. This is because a meta-variable
is underspecified for its content and thus it is fully
commensurate with any specified formula.
 Based on the constraint (20), we shall address
the case-marking issues of multiple stripping (see
footnote 2). To being with, consider (21)B.

PACLIC 28

!97

(21) A: Mary-ga ringo-o tabe-ta-yo.
M-NOM apple-ACC eat-PAST-SFP
‘Mary ate apples.’

 B: Iya, Tom-ga nashi-o da.
no T-NOM pear-ACC COP
‘No, Tom, pears.’ (= ‘No, Tom ate pears.’)

First, an unfixed node is introduced for Tom. This
is immediately fixed by the case particle ga. At this
point, an unfixed node is no longer in place, and an
unfixed node may be once again introduced. This
unfixed node is decorated by the second NP nashi
(= ‘pear’) and resolved by the case particle o. So,
the constraint (20) is not violated.
 Next, consider the ungrammatical stripping data
(22)B, where a case particle is dropped off Tom
and nashi in (21)B.

(22) A: Mary-ga ringo-o tabe-ta-yo.

M-NOM apple-ACC eat-PAST-SFP
‘Mary ate apples.’

 B: *Iya, Tom nashi da.
 no T pear COP

In this example, an unfixed node for Tom cannot
be resolved because (i) Tom is case-less and (ii)
UNIFICATION cannot fire. Recall that UNIFICATION
requires a fixed type-e node, but such a node is
provided after the parse of the copula da triggers
the re-use of a previous type-t structure. In short,
UNIFICATION may be used for an unfixed node for
the pre-copula NP alone. So, when an unfixed node
is induced for the second NP nashi, there are two
unfixed nodes relative to the same node at a time,
violating the constraint (20).
 Our analysis explains “partial case-marking,” as
illustrated in (23)B.

(23) A: Mary-ga ringo-o tabe-ta-yo.

M-NOM apple-ACC eat-PAST-SFP
‘Mary ate apples.’

 B: Iya, Tom-ga nashi da.
no T-NOM pear COP
‘No, Tom, pears.’ (= ‘No, Tom ate pears.’)

In this case, an unfixed node for Tom is resolved
immediately by the nominative case particle ga,
and an unfixed node can be safely introduced for
the second NP nashi. This unfixed node cannot be
resolved lexically since nashi lacks a case particle,
but it can be resolved non-lexically by the general

action UNIFICATION after the parse of da. So, there
are no multiple unfixed nodes at a time, and the
string is correctly predicted to be grammatical.
 The analysis also predicts the ungrammaticality
of (24)B, which exhibits the reversed case-marking
pattern from (23)B.

(24) A: Mary-ga ringo-o tabe-ta-yo.

M-NOM apple-ACC eat-PAST-SFP
‘Mary ate apples.’

 B: *Iya, Tom nashi-o da.
 no T pear-ACC COP

These data are readily explained: an unfixed node
for Tom cannot be fixed since (i) Mary is case-less
and (ii) UNIFICATION cannot fire. Thus, the parser
has to induce another unfixed node for the second
NP nashi. This violates the constraint (20).
 Our DS account is further corroborated by the
multiple stripping with three NPs.

(25) A: Tom-ga Mary-ni ringo-o age-ta-yo.

T-NOM M-DAT apple-ACC give-PAST-SFP
‘Tom gave apples to Mary.’

 B: Iya, Peter-ga Nancy-ni nashi-o da-yo.
no P-NOM N-DAT pear-ACC COP-SFP
‘No, Peter, to Nancy, pears.’ (= ‘No, Peter
gave pears to Nancy.’)

B’: Iya, Peter-ga Nancy-ni nashi da-yo.
no P-NOM N-DAT pear COP-SFP

(25)B is grammatical since every unfixed node is
immediately resolved by a particle. That is, there is
only a single unfixed node at a time. (25)B’ is also
grammatical since an unfixed node for every non-
final NP (i.e. Peter, Nancy) is immediately fixed
by a particle, and an unfixed node for the final NP
(i.e. nashi) is resolved by UNIFICATION after da is
parsed. Once again, there is only a single unfixed
node at a time. By contrast, the other case-marking
patterns are ruled out: (i) only Peter is case-less,
(ii) only Nancy is case-less, (iii) only Peter and
Nancy are case-less, (iv) only Peter and nashi are
case-less, (v) only Nancy and nashi are case-less,
and (vi) every NP is case-less. In these cases, there
are necessarily multiple unfixed nodes at a time.
 Our uniform analysis explains the case-marking
patterns of stripping as an outcome of incremental
tree growth: an NP in stripping is processed at an
unfixed node, and each unfixed node must be fixed
before another unfixed node is introduced.

PACLIC 28

!98

5 Extensions to Sluicing

There is a construction that is similar to stripping:
sluicing (e.g. Hiraiwa & Ishihara 2012, Kizu 2005,
Nishiyama et al. 1996, Takahashi 1996; see also
Ross 1969). In this section, we note that the case-
marking patterns of stripping are carried over into
sluicing, and contend that our analysis of stripping
is extended to various sluicing data.
 In (26), the second clause exemplifies sluicing.
As indicated in the parentheses, the case particle
ga is optional, as in the case of stripping.

(26) Paatii-de dareka-ga kyoku-o

party-at someone-NOM song-ACC
uta-tta-ga, boku-wa [dare(-ga)-ka]
sing-PAST-but I-TOP [who(-NOM)-Q]
omoida-se-nai.

 remember-can-NEG
‘Someone sang a song at a party, but I cannot
remember who sang a song.’

Multiple sluicing is also possible, as shown in (27).
Of particular note is that in the sequence of wh-
items, a case particle may be dropped off the final
wh-item alone (in the present case, nani).

(27) Paatii-de dareka-ga nanika-o

party-at someone-NOM something-ACC
uta-tta-ga, boku-wa [dare*(-ga)
sing-PAST-but I-TOP [who(-NOM)

 nani(-o) da-tta-ka] omoida-se-nai.
 what(-ACC) COP-PAST-Q] remember-can-NEG

‘Someone sang something at a party, but I
cannot remember who sang what.’

 The tendency in the past literature is to assign a
radically different structure to sluicing depending
on whether a wh-phrase is case-marked (Fukaya
2007, 2013; see also Takahashi 1996). Such non-
uniform analyses are challenged by (27), where a
single sluicing involves a case-marked wh-phrase
and a case-less wh-phrase simultaneously. Further,
even if it is possible to invent a new mechanism
which allows case-marked and case-less wh-items
in a single clause, it remains the mystery why only
the final wh-phrase may be case-less.

5.1 A Uniform Account of Sluicing

Our analysis of sluicing is essentially the same as
that of stripping, but there are two new ingredients.

First, the content of a wh-phrase is a “WH-meta-
variable.” Unlike usual meta-variables, WH-meta-
variables do not have to be saturated (Kempson et
al. 2001). Second, sluicing involves the embedding
of clauses; within DS, this is analysed by inducing
an unfixed node of type-t. Building on Cann et al.
(2005), Seraku (2013) claims that such an unfixed
node is induced by *ADJUNCTION in Japanese.
 Let us first consider (26). The parse of the pre-
ga clause results in a propositional structure. This
is associated with another, emergent propositional
structure by the parse of ga (= ‘but’). Formally,
this structure pairing is instantiated as a “LINK”
relation, as visually expressed by a curved arrow.
(The exact LINK mechanism is not relevant to our
discussion; for details, see Cann et al. 2005 and
Kempson et al. 2001). In (28), the adjunct paatii-
de (= ‘at a party’) is neglected for brevity, and the
internal structure is schematised as a triangle.

(28) Parsing Dareka-ga kyoku-o uta-tta-ga

uta'(kyoku')(dareka') : t
?t

Then, the emergent propositional structure with ?t
is fleshed out by the parse of the sluicing string.
The parse of boku-wa leads to the usual structure-
update: LOCAL *ADJUNCTION induces an unfixed
node of type-e; this unfixed node is decorated by
the matrix subject boku (= ‘I’); finally, the node is
resolved as a subject node by the topic marker wa.

(29) Parsing (26) up to boku-wa

uta'(kyoku')(dareka') : t
?t

boku' : e

It is time to parse the wh-item dare (= ‘who’). This
is where the new ingredients come into place. First,
*ADJUNCTION induces an unfixed node of type-t
(expressed by a dotted line), allowing the parser to
built an embedded propositional structure.

(30) *ADJUNCTION

uta'(kyoku')(dareka') : t
?t

boku' : e ?t

PACLIC 28

!99

Second, LOCAL *ADJUNCTION fires to introduce an
unfixed node of type-e. This node is decorated by
the parse of the wh-phrase dare. As illustrated in
(31), the content of dare is a WH-meta-variable.
The unfixed node for dare may be resolved in two
ways depending on the case-marking of dare.

(31) Parsing the string (26) up to dare

uta'(kyoku')(dareka') : t
?t

boku' : e ?t

WH : e

Case-marked sluicing: When dare is marked with
the nominative case particle ga, the unfixed node
for dare is immediately fixed as a subject node.

(32) Parsing the string (26) up to dare-ga

uta'(kyoku')(dareka') : t
?t

boku' : e ?t

WH : e

The next item da provides a type-t meta-variable,
which triggers the re-use of the structure built by
uta (= ‘sing’) in the first clause. With respect to
this clause, the internal argument slot of uta' is
saturated as kyoku'. As for the external argument
slot, it collapses with the WH-meta-variable. Then,
omoidas-e-nai (= ‘cannot remember’) fleshes out
the higher ?t-decorated structure. This involves the
creation of a type-t node as an internal argument.
This type-t node is merged with the unfixed, lower
type-t node by means of UNIFICATION. Finally,
ELIMINATION is run, and the final state (33) holds,
where o-e-n' is the content of omoidas-e-nai.

(33) ELIMINATION

uta'(kyoku')(dareka') : t

o-e-n'(uta'(kyoku')(WH))(boku') : t

boku' : e o-e-n'(uta'(kyoku')(WH)) : e→t

Case-less sluicing: The tree state (33) holds even
when the case particle ga is not attached to the wh-
phrase dare. That is, irrespective of case-marking,
uniformity in our analysis remains intact.
 To begin with, the parse of (26) up to the wh-
phrase dare yields (31), repeated as (34).

(34) Parsing the string (26) up to dare

uta'(kyoku')(dareka') : t
?t

boku' : e ?t

WH : e

Given that a case particle is absent, the tree-update
proceeds without resolving the unfixed node for
dare. The unfixed node gets resolved as a subject
node by UNIFICATION after the copula da is parsed.
This is because da triggers the re-use of a previous
propositional structure, where there is a fixed node
of type-e, with which the unfixed node of type-e is
merged. The rest of the process is as usual, and the
tree update ends with the final state (33). In this
way, the identical final tree state holds no matter
whether case-marking is encompassed in sluicing.
 There is a remaining problem for our analysis of
sluicing. Unlike stripping, the copula da in sluicing
may be omitted (Nishiyama et al. 1996). Since da
plays an important role in our account, it must be
clarified why da may be dropped in sluicing but
not stripping. This is a residual for future work.

5.2 Multiple Sluicing
The relevant data are repeated here as (35).

(35) Paatii-de dareka-ga nanika-o

party-at someone-NOM something-ACC
uta-tta-ga, boku-wa [dare*(-ga)
sing-PAST-but I-TOP [who(-NOM)

 nani(-o) da-tta-ka] omoida-se-nai.
 what(-ACC) COP-PAST-Q] remember-can-NEG

‘Someone sang something at a party, but I
cannot remember who sang what.’

The case-marking patterns in (35) are explained in
our account; the analysis is essentially the same as
the one given in Section 4, and brief expositions
would suffice. Firstly, multiple sluicing is possible
as long as each wh-phrase has an appropriate case

PACLIC 28

!100

particle. This is because an unfixed node for each
wh-phrase can be immediately resolved by a case
particle. Second, a case particle may be dropped
only if it is attached to a final wh-phrase. This is
because UNIFICATION (i.e. the non-lexical action to
resolve an unfixed node) is applicable to the final
wh-word: (i) UNIFICATION requires a propositional
structure with a fixed type-e node, (ii) such a
structure is provided by the copula da, and (iii) da
is parsed only after all wh-phrases are processed.
 In a nutshell, our dynamic account integrates the
two types of sluicing and predicts the distribution
of case particles in terms of incremental parsing.

6 Conclusion

Our analysis of stripping and sluicing is uniform in
two senses: (i) stripping/sluicing are treated by the
same machinery and (ii) for each construction, no
distinct structures are postulated. Further, we have
revealed the partial-case-marking patterns for these
ellipsis constructions, and have shown that they are
amenable to our unitary account.

Acknowledgments
I greatly benefitted from discussions with Ash
Asudeh, Mary Dalrymple, Ruth Kempson, Jieun
Kiaer, and Lutz Marten. I would like to thank the
anonymous PACLIC reviewers for their valuable
comments on the earlier version of this article.

References
Arregi, K. 2010. Ellipsis in Split Questions. Natural

Language and Linguistic Theory 28: 539-592.

Blackburn, P., Meyer-Viol, W. 1994. Linguistics, Logic,
and Finite Trees. Bulletin of Interest Group of Pure
and Applied Logics 2: 2-39.

Cann, R. 2011. Towards an Account of the Auxiliary
System in English. In Kempson, R., et al. (eds.) The
Dynamics of Lexical Interfaces. CSLI, Stanford.

Cann, R., Kempson, R., Marten, L. 2005. The Dynamics
of Language: An Introduction. Elsevier, Oxford.

Cann, R., Kempson, R., Purver, M. 2007. Context-
dependent Well-formedness. Research on Language
and Computation 5: 333-358.

Chatzikyriakidis, S., Kempson, R. 2011. Standard
Modern and Pontic Greek Greek Person Restrictions.
Journal of Greek Linguistics 11(2): 127-66.

Fukaya, T. 2007. Sluicing and Stripping in Japanese and
some Implications. Ph.D. dissertation, University of
Southern California.

Fukaya, T. 2013. Island Insensitivity in Japanese and
some Implications. In Merchant, J., Simpson, A.
(eds.) Sluicing: Cross-linguistic perspectives. Oxford
University Press, Oxford.

Fukaya, T, Hoji, H. 2003. Stripping and Sluicing in
Japanese and their Implications. Bird, S. et al. (eds).
Proceedings of the 18th WCCFL. Cascadilla Press,
MA, Somerville.

Fukui, N., Sakai, H. 2003. The Visibility Guideline for
Functional Categories. Lingua 113: 321-375.

Gibson, H. 2012. Auxiliary placement in Rangi. Ph.D.
thesis, SOAS (University of London).

Hankamer, J., Sag, I. 1976. Deep and Surface Anaphora.
Linguistic Inquiry 7: 391-426.

Hiraiwa, K., Ishihara, S. 2012. Syntactic Metamorphosis.
Syntax 15: 142-180.

Howes, C. 2012. Coordinating in Dialogue. Ph.D. thesis,
Queen Mary, University of London.

Kempson, R., Gregoromichelaki, E., Howes, C. 2011.
The Dynamics of Lexical Interfaces. CSLI, Stanford.

Kempson, R., Meyer-Viol, W., Gabbay, D. 2001.
Dynamic Syntax. Blackwell, Oxford.

Kizu, M. 2005. Cleft Constructions in Japanese Syntax.
Palgrave, New York.

Merchant, J. 2004. Fragments and Ellipsis. Linguistics
and Philosophy 27: 661-738.

Nishiyama, K., Whitman, J., Yi, E.-Y. 1996. Syntactic
Movement of Overt Wh-Phrases in Japanese and
Korean. In Akatsuka, N., et al. (eds.)
Japanese/Korean Linguistics 5. CSLI, Stanford.

Ross, J. R. 1969. “Guess Who?” In Binnick, R. I. et al.
(eds.) Papers from the 5th Regional Meeting of
Chicago Linguistic Society. University of Chicago
Press, Chicago.

Sakai, H. 2000. Predicate Ellipsis and Nominalization in
Japanese. Proceedings of 2000 Seoul International
Conference on Language and Computation. Korea
University, Seoul.

Seraku, T. 2013. Clefts, Relatives, and Language
Dynamics. D.Phil. thesis, University of Oxford.

Takahashi, D. 1994. Sluicing in Japanese. Journal of
East Asian Linguistics 3, 265-300.

