Ari Holtzman


2023

pdf bib
Contrastive Decoding: Open-ended Text Generation as Optimization
Xiang Lisa Li | Ari Holtzman | Daniel Fried | Percy Liang | Jason Eisner | Tatsunori Hashimoto | Luke Zettlemoyer | Mike Lewis
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Given a language model (LM), maximum probability is a poor decoding objective for open-ended generation, because it produces short and repetitive text. On the other hand, sampling can often produce incoherent text that drifts from the original topics. We propose contrastive decoding (CD), a reliable decoding approach that optimizes a contrastive objective subject to a plausibility constraint. The contrastive objective returns the difference between the likelihood under a large LM (called the expert, e.g. OPT-13B) and a small LM (called the amateur, e.g. OPT-125M), and the constraint ensures that the outputs are plausible. CD is inspired by the fact that the failures of larger LMs (e.g., repetition, inco- herence) are even more prevalent in smaller LMs, and that this difference signals which texts should be preferred. CD requires zero additional training, and produces higher quality text than decoding from the larger LM alone. It also works across model scales (OPT-13B and GPT2-1.5B) and significantly outperforms four strong decoding algorithms (e.g., nucleus, top-k) in automatic and human evaluations across wikipedia, news and story domains.

pdf bib
What Do NLP Researchers Believe? Results of the NLP Community Metasurvey
Julian Michael | Ari Holtzman | Alicia Parrish | Aaron Mueller | Alex Wang | Angelica Chen | Divyam Madaan | Nikita Nangia | Richard Yuanzhe Pang | Jason Phang | Samuel R. Bowman
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present the results of the NLP Community Metasurvey. Run from May to June 2022, it elicited opinions on controversial issues, including industry influence in the field, concerns about AGI, and ethics. Our results put concrete numbers to several controversies: For example, respondents are split in half on the importance of artificial general intelligence, whether language models understand language, and the necessity of linguistic structure and inductive bias for solving NLP problems. In addition, the survey posed meta-questions, asking respondents to predict the distribution of survey responses. This allows us to uncover false sociological beliefs where the community’s predictions don’t match reality. Among other results, we find that the community greatly overestimates its own belief in the usefulness of benchmarks and the potential for scaling to solve real-world problems, while underestimating its belief in the importance of linguistic structure, inductive bias, and interdisciplinary science.

pdf bib
Toward Human Readable Prompt Tuning: Kubrick’s The Shining is a good movie, and a good prompt too?
Weijia Shi | Xiaochuang Han | Hila Gonen | Ari Holtzman | Yulia Tsvetkov | Luke Zettlemoyer
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models can perform downstream tasks in a zero-shot fashion, given natural language prompts that specify the desired behavior. Such prompts are typically hand engineered, but can also be learned with gradient-based methods from labeled data. However, it is underexplored what factors make the prompts effective, especially when the prompts are in natural language. In this paper, we investigate common attributes shared by effective prompts in classification problems. We first propose a human readable prompt tuning method (FluentPrompt) based on Langevin dynamics that incorporates a fluency constraint to find a distribution of effective and fluent prompts. Our analysis reveals that effective prompts are topically related to the task domain and calibrate the prior probability of output labels. Based on these findings, we also propose a method for generating prompts using only unlabeled data, outperforming strong baselines by an average of 7.0% accuracy across three tasks.

2022

pdf bib
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Sewon Min | Xinxi Lyu | Ari Holtzman | Mikel Artetxe | Mike Lewis | Hannaneh Hajishirzi | Luke Zettlemoyer
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Large language models (LMs) are able to in-context learn—perform a new task via inference alone by conditioning on a few input-label pairs (demonstrations) and making predictions for new inputs. However, there has been little understanding of how the model learns and which aspects of the demonstrations contribute to end task performance. In this paper, we show that ground truth demonstrations are in fact not required—randomly replacing labels in the demonstrations barely hurts performance on a range of classification and multi-choce tasks, consistently over 12 different models including GPT-3. Instead, we find that other aspects of the demonstrations are the key drivers of endtask performance, including the fact that they provide a few examples of (1) the label space, (2) the distribution of the input text, and (3) the overall format of the sequence. Together, our analysis provides a new way of understanding how and why in-context learning works, while opening up new questions about how much can be learned from large language models through inference alone.

pdf bib
DEMix Layers: Disentangling Domains for Modular Language Modeling
Suchin Gururangan | Mike Lewis | Ari Holtzman | Noah A. Smith | Luke Zettlemoyer
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce a new domain expert mixture (DEMix) layer that enables conditioning a language model (LM) on the domain of the input text. A DEMix layer includes a collection of expert feedforward networks, each specialized to a domain, that makes the LM modular: experts can be mixed, added, or removed after initial training. Extensive experiments with autoregressive transformer LMs (up to 1.3B parameters) show that DEMix layers reduce test-time perplexity (especially for out-of-domain data), increase training efficiency, and enable rapid adaptation. Mixing experts during inference, using a parameter-free weighted ensemble, enables better generalization to heterogeneous or unseen domains. We also show it is possible to add experts to adapt to new domains without forgetting older ones, and remove experts to restrict access to unwanted domains. Overall, these results demonstrate benefits of domain modularity in language models.

2021

pdf bib
TuringAdvice: A Generative and Dynamic Evaluation of Language Use
Rowan Zellers | Ari Holtzman | Elizabeth Clark | Lianhui Qin | Ali Farhadi | Yejin Choi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress.

pdf bib
Discourse Understanding and Factual Consistency in Abstractive Summarization
Saadia Gabriel | Antoine Bosselut | Jeff Da | Ari Holtzman | Jan Buys | Kyle Lo | Asli Celikyilmaz | Yejin Choi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We introduce a general framework for abstractive summarization with factual consistency and distinct modeling of the narrative flow in an output summary. Our work addresses current limitations of models for abstractive summarization that often hallucinate information or generate summaries with coherence issues. To generate abstractive summaries with factual consistency and narrative flow, we propose Cooperative Generator-Discriminator Networks (Co-opNet), a novel transformer-based framework where the generator works with a discriminator architecture to compose coherent long-form summaries. We explore four different discriminator objectives which each capture a different aspect of coherence, including whether salient spans of generated abstracts are hallucinated or appear in the input context, and the likelihood of sentence adjacency in generated abstracts. We measure the ability of Co-opNet to learn these objectives with arXiv scientific papers, using the abstracts as a proxy for gold long-form scientific article summaries. Empirical results from automatic and human evaluations demonstrate that Co-opNet learns to summarize with considerably improved global coherence compared to competitive baselines.

pdf bib
Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Language Models
Peter West | Ximing Lu | Ari Holtzman | Chandra Bhagavatula | Jena D. Hwang | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Publicly available, large pretrained Language Models (LMs) generate text with remarkable quality, but only sequentially from left to right. As a result, they are not immediately applicable to generation tasks that break the unidirectional assumption, such as paraphrasing or text-infilling, necessitating task-specific supervision. In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks. Our 2-step approach requires no supervision or even parallel corpora, only two off-the-shelf pretrained LMs in opposite directions: forward and backward. First, in the contextualization step, we use LMs to generate ensembles of past and future contexts which collectively capture the input (e.g. the source sentence for paraphrasing). Second, in the reflection step, we condition on these “context ensembles”, generating outputs that are compatible with them. Comprehensive empirical results demonstrate that Reflective Decoding outperforms strong unsupervised baselines on both paraphrasing and abductive text infilling, significantly narrowing the gap between unsupervised and supervised methods. Reflective Decoding surpasses multiple supervised baselines on various metrics including human evaluation.

pdf bib
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World
Rowan Zellers | Ari Holtzman | Matthew Peters | Roozbeh Mottaghi | Aniruddha Kembhavi | Ali Farhadi | Yejin Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose PIGLeT: a model that learns physical commonsense knowledge through interaction, and then uses this knowledge to ground language. We factorize PIGLeT into a physical dynamics model, and a separate language model. Our dynamics model learns not just what objects are but also what they do: glass cups break when thrown, plastic ones don’t. We then use it as the interface to our language model, giving us a unified model of linguistic form and grounded meaning. PIGLeT can read a sentence, simulate neurally what might happen next, and then communicate that result through a literal symbolic representation, or natural language. Experimental results show that our model effectively learns world dynamics, along with how to communicate them. It is able to correctly forecast what happens next given an English sentence over 80% of the time, outperforming a 100x larger, text-to-text approach by over 10%. Likewise, its natural language summaries of physical interactions are also judged by humans as more accurate than LM alternatives. We present comprehensive analysis showing room for future work.

pdf bib
Surface Form Competition: Why the Highest Probability Answer Isn’t Always Right
Ari Holtzman | Peter West | Vered Shwartz | Yejin Choi | Luke Zettlemoyer
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Large language models have shown promising results in zero-shot settings. For example, they can perform multiple choice tasks simply by conditioning on a question and selecting the answer with the highest probability. However, ranking by string probability can be problematic due to surface form competition—wherein different surface forms compete for probability mass, even if they represent the same underlying concept in a given context, e.g. “computer” and “PC.” Since probability mass is finite, this lowers the probability of the correct answer, due to competition from other strings that are valid answers (but not one of the multiple choice options). We introduce Domain Conditional Pointwise Mutual Information, an alternative scoring function that directly compensates for surface form competition by simply reweighing each option according to its a priori likelihood within the context of a specific task. It achieves consistent gains in zero-shot performance over both calibrated and uncalibrated scoring functions on all GPT-2 and GPT-3 models on a variety of multiple choice datasets.

pdf bib
CLIPScore: A Reference-free Evaluation Metric for Image Captioning
Jack Hessel | Ari Holtzman | Maxwell Forbes | Ronan Le Bras | Yejin Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In this paper, we report the surprising empirical finding that CLIP (Radford et al., 2021), a cross-modal model pretrained on 400M image+caption pairs from the web, can be used for robust automatic evaluation of image captioning without the need for references. Experiments spanning several corpora demonstrate that our new reference-free metric, CLIPScore, achieves the highest correlation with human judgements, outperforming existing reference-based metrics like CIDEr and SPICE. Information gain experiments demonstrate that CLIPScore, with its tight focus on image-text compatibility, is complementary to existing reference-based metrics that emphasize text-text similarities. Thus, we also present a reference-augmented version, RefCLIPScore, which achieves even higher correlation. Beyond literal description tasks, several case studies reveal domains where CLIPScore performs well (clip-art images, alt-text rating), but also where it is relatively weaker in comparison to reference-based metrics, e.g., news captions that require richer contextual knowledge.

2020

pdf bib
Experience Grounds Language
Yonatan Bisk | Ari Holtzman | Jesse Thomason | Jacob Andreas | Yoshua Bengio | Joyce Chai | Mirella Lapata | Angeliki Lazaridou | Jonathan May | Aleksandr Nisnevich | Nicolas Pinto | Joseph Turian
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utterances meaningful. Natural language processing is a diverse field, and progress throughout its development has come from new representational theories, modeling techniques, data collection paradigms, and tasks. We posit that the present success of representation learning approaches trained on large, text-only corpora requires the parallel tradition of research on the broader physical and social context of language to address the deeper questions of communication.

2019

pdf bib
BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle
Peter West | Ari Holtzman | Jan Buys | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The principle of the Information Bottleneck (Tishby et al., 1999) produces a summary of information X optimized to predict some other relevant information Y. In this paper, we propose a novel approach to unsupervised sentence summarization by mapping the Information Bottleneck principle to a conditional language modelling objective: given a sentence, our approach seeks a compressed sentence that can best predict the next sentence. Our iterative algorithm under the Information Bottleneck objective searches gradually shorter subsequences of the given sentence while maximizing the probability of the next sentence conditioned on the summary. Using only pretrained language models with no direct supervision, our approach can efficiently perform extractive sentence summarization over a large corpus. Building on our unsupervised extractive summarization, we also present a new approach to self-supervised abstractive summarization, where a transformer-based language model is trained on the output summaries of our unsupervised method. Empirical results demonstrate that our extractive method outperforms other unsupervised models on multiple automatic metrics. In addition, we find that our self-supervised abstractive model outperforms unsupervised baselines (including our own) by human evaluation along multiple attributes.

pdf bib
Counterfactual Story Reasoning and Generation
Lianhui Qin | Antoine Bosselut | Ari Holtzman | Chandra Bhagavatula | Elizabeth Clark | Yejin Choi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Counterfactual reasoning requires predicting how alternative events, contrary to what actually happened, might have resulted in different outcomes. Despite being considered a necessary component of AI-complete systems, few resources have been developed for evaluating counterfactual reasoning in narratives. In this paper, we propose Counterfactual Story Rewriting: given an original story and an intervening counterfactual event, the task is to minimally revise the story to make it compatible with the given counterfactual event. Solving this task will require deep understanding of causal narrative chains and counterfactual invariance, and integration of such story reasoning capabilities into conditional language generation models. We present TIMETRAVEL, a new dataset of 29,849 counterfactual rewritings, each with the original story, a counterfactual event, and human-generated revision of the original story compatible with the counterfactual event. Additionally, we include 81,407 counterfactual “branches” without a rewritten storyline to support future work on semi- or un-supervised approaches to counterfactual story rewriting. Finally, we evaluate the counterfactual rewriting capacities of several competitive baselines based on pretrained language models, and assess whether common overlap and model-based automatic metrics for text generation correlate well with human scores for counterfactual rewriting.

pdf bib
HellaSwag: Can a Machine Really Finish Your Sentence?
Rowan Zellers | Ari Holtzman | Yonatan Bisk | Ali Farhadi | Yejin Choi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as “A woman sits at a piano,” a machine must select the most likely followup: “She sets her fingers on the keys.” With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans (>95% accuracy), state-of-the-art models struggle (<48%). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical ‘Goldilocks’ zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-harder challenges.

2018

pdf bib
Sounding Board: A User-Centric and Content-Driven Social Chatbot
Hao Fang | Hao Cheng | Maarten Sap | Elizabeth Clark | Ari Holtzman | Yejin Choi | Noah A. Smith | Mari Ostendorf
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

We present Sounding Board, a social chatbot that won the 2017 Amazon Alexa Prize. The system architecture consists of several components including spoken language processing, dialogue management, language generation, and content management, with emphasis on user-centric and content-driven design. We also share insights gained from large-scale online logs based on 160,000 conversations with real-world users.

pdf bib
Learning to Write with Cooperative Discriminators
Ari Holtzman | Jan Buys | Maxwell Forbes | Antoine Bosselut | David Golub | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their local fluency, long-form text generated from RNNs is often generic, repetitive, and even self-contradictory. We propose a unified learning framework that collectively addresses all the above issues by composing a committee of discriminators that can guide a base RNN generator towards more globally coherent generations. More concretely, discriminators each specialize in a different principle of communication, such as Grice’s maxims, and are collectively combined with the base RNN generator through a composite decoding objective. Human evaluation demonstrates that text generated by our model is preferred over that of baselines by a large margin, significantly enhancing the overall coherence, style, and information of the generations.

2017

pdf bib
Connotation Frames of Power and Agency in Modern Films
Maarten Sap | Marcella Cindy Prasettio | Ari Holtzman | Hannah Rashkin | Yejin Choi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The framing of an action influences how we perceive its actor. We introduce connotation frames of power and agency, a pragmatic formalism organized using frame semantic representations, to model how different levels of power and agency are implicitly projected on actors through their actions. We use the new power and agency frames to measure the subtle, but prevalent, gender bias in the portrayal of modern film characters and provide insights that deviate from the well-known Bechdel test. Our contributions include an extended lexicon of connotation frames along with a web interface that provides a comprehensive analysis through the lens of connotation frames.