David Leslie


2019

pdf bib
FIESTA: Fast IdEntification of State-of-The-Art models using adaptive bandit algorithms
Henry Moss | Andrew Moore | David Leslie | Paul Rayson
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present FIESTA, a model selection approach that significantly reduces the computational resources required to reliably identify state-of-the-art performance from large collections of candidate models. Despite being known to produce unreliable comparisons, it is still common practice to compare model evaluations based on single choices of random seeds. We show that reliable model selection also requires evaluations based on multiple train-test splits (contrary to common practice in many shared tasks). Using bandit theory from the statistics literature, we are able to adaptively determine appropriate numbers of data splits and random seeds used to evaluate each model, focusing computational resources on the evaluation of promising models whilst avoiding wasting evaluations on models with lower performance. Furthermore, our user-friendly Python implementation produces confidence guarantees of correctly selecting the optimal model. We evaluate our algorithms by selecting between 8 target-dependent sentiment analysis methods using dramatically fewer model evaluations than current model selection approaches.

2018

pdf bib
Using J-K-fold Cross Validation To Reduce Variance When Tuning NLP Models
Henry Moss | David Leslie | Paul Rayson
Proceedings of the 27th International Conference on Computational Linguistics

K-fold cross validation (CV) is a popular method for estimating the true performance of machine learning models, allowing model selection and parameter tuning. However, the very process of CV requires random partitioning of the data and so our performance estimates are in fact stochastic, with variability that can be substantial for natural language processing tasks. We demonstrate that these unstable estimates cannot be relied upon for effective parameter tuning. The resulting tuned parameters are highly sensitive to how our data is partitioned, meaning that we often select sub-optimal parameter choices and have serious reproducibility issues. Instead, we propose to use the less variable J-K-fold CV, in which J independent K-fold cross validations are used to assess performance. Our main contributions are extending J-K-fold CV from performance estimation to parameter tuning and investigating how to choose J and K. We argue that variability is more important than bias for effective tuning and so advocate lower choices of K than are typically seen in the NLP literature and instead use the saved computation to increase J. To demonstrate the generality of our recommendations we investigate a wide range of case-studies: sentiment classification (both general and target-specific), part-of-speech tagging and document classification.