Jiaxun Cai


2018

pdf pdf bib
A Full End-to-End Semantic Role Labeler, Syntactic-agnostic Over Syntactic-aware?
Jiaxun Cai | Shexia He | Zuchao Li | Hai Zhao

Semantic role labeling (SRL) is to recognize the predicate-argument structure of a sentence, including subtasks of predicate disambiguation and argument labeling. Previous studies usually formulate the entire SRL problem into two or more subtasks. For the first time, this paper introduces an end-to-end neural model which unifiedly tackles the predicate disambiguation and the argument labeling in one shot. Using a biaffine scorer, our model directly predicts all semantic role labels for all given word pairs in the sentence without relying on any syntactic parse information. Specifically, we augment the BiLSTM encoder with a non-linear transformation to further distinguish the predicate and the argument in a given sentence, and model the semantic role labeling process as a word pair classification task by employing the biaffine attentional mechanism. Though the proposed model is syntax-agnostic with local decoder, it outperforms the state-of-the-art syntax-aware SRL systems on the CoNLL-2008, 2009 benchmarks for both English and Chinese. To our best knowledge, we report the first syntax-agnostic SRL model that surpasses all known syntax-aware models.

pdf pdf bib
Seq2seq Dependency Parsing
Zuchao Li | Jiaxun Cai | Shexia He | Hai Zhao

This paper presents a sequence to sequence (seq2seq) dependency parser by directly predicting the relative position of head for each given word, which therefore results in a truly end-to-end seq2seq dependency parser for the first time. Enjoying the advantage of seq2seq modeling, we enrich a series of embedding enhancement, including firstly introduced subword and node2vec augmentation. Meanwhile, we propose a beam search decoder with tree constraint and subroot decomposition over the sequence to furthermore enhance our seq2seq parser. Our parser is evaluated on benchmark treebanks, being on par with the state-of-the-art parsers by achieving 94.11% UAS on PTB and 88.78% UAS on CTB, respectively.

pdf pdf bib
A Unified Syntax-aware Framework for Semantic Role Labeling
Zuchao Li | Shexia He | Jiaxun Cai | Zhuosheng Zhang | Hai Zhao | Gongshen Liu | Linlin Li | Luo Si

Semantic role labeling (SRL) aims to recognize the predicate-argument structure of a sentence. Syntactic information has been paid a great attention over the role of enhancing SRL. However, the latest advance shows that syntax would not be so important for SRL with the emerging much smaller gap between syntax-aware and syntax-agnostic SRL. To comprehensively explore the role of syntax for SRL task, we extend existing models and propose a unified framework to investigate more effective and more diverse ways of incorporating syntax into sequential neural networks. Exploring the effect of syntactic input quality on SRL performance, we confirm that high-quality syntactic parse could still effectively enhance syntactically-driven SRL. Using empirically optimized integration strategy, we even enlarge the gap between syntax-aware and syntax-agnostic SRL. Our framework achieves state-of-the-art results on CoNLL-2009 benchmarks both for English and Chinese, substantially outperforming all previous models.