Kyle Richardson


2023

pdf bib
Language Models with Rationality
Nora Kassner | Oyvind Tafjord | Ashish Sabharwal | Kyle Richardson | Hinrich Schuetze | Peter Clark
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent “beliefs”. This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a **rational, self-reflecting layer** on top of the LLM. First, given a question, we construct a **belief graph** using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM.

pdf bib
DISCO: Distilling Counterfactuals with Large Language Models
Zeming Chen | Qiyue Gao | Antoine Bosselut | Ashish Sabharwal | Kyle Richardson
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high-quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository are available at: https://github.com/eric11eca/disco

2022

pdf bib
What Makes Instruction Learning Hard? An Investigation and a New Challenge in a Synthetic Environment
Matthew Finlayson | Kyle Richardson | Ashish Sabharwal | Peter Clark
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The instruction learning paradigm—where a model learns to perform new tasks from task descriptions alone—has become popular in research on general-purpose models. The capabilities of large transformer models as instruction learners, however, remain poorly understood. We use a controlled synthetic environment to characterize such capabilities. Specifically, we use the task of deciding whether a given string matches a regular expression (viewed as an instruction) to identify properties of tasks, instructions, and instances that make instruction learning challenging. For instance, we find that our model, a fine-tuned T5-based text2text transformer, struggles with large regular languages, suggesting that less precise instructions are challenging for models. Instruction executions that require tracking longer contexts of prior steps are also difficult. We use our findings to systematically construct a challenging instruction learning dataset, which we call Hard RegSet. Fine-tuning on Hard RegSet, our large transformer learns to correctly interpret (with at least 90% accuracy) only 65.6% of test instructions, and 11%-24% of the instructions in out-of-distribution generalization settings. We thus propose Hard RegSet as a challenging instruction learning dataset, and a controlled environment for studying instruction learning.

pdf bib
Learning to Decompose: Hypothetical Question Decomposition Based on Comparable Texts
Ben Zhou | Kyle Richardson | Xiaodong Yu | Dan Roth
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Explicit decomposition modeling, which involves breaking down complex tasks into more straightforward and often more interpretable sub-tasks, has long been a central theme in developing robust and interpretable NLU systems. However, despite the many datasets and resources built as part of this effort, the majority have small-scale annotations and limited scope, which is insufficient to solve general decomposition tasks. In this paper, we look at large-scale intermediate pre-training of decomposition-based transformers using distant supervision from comparable texts, particularly large-scale parallel news. We show that with such intermediate pre-training, developing robust decomposition-based models for a diverse range of tasks becomes more feasible. For example, on semantic parsing, our model, DecompT5, improves 20% to 30% on two datasets, Overnight and TORQUE, over the baseline language model. We further use DecompT5 to build a novel decomposition-based QA system named DecompEntail, improving over state-of-the-art models, including GPT-3, on both HotpotQA and StrategyQA by 8% and 4%, respectively.

pdf bib
Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs
Kyle Richardson | Ronen Tamari | Oren Sultan | Dafna Shahaf | Reut Tsarfaty | Ashish Sabharwal
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Can we teach models designed for language understanding tasks to track and improve their beliefs through intermediate points in text? Besides making their inner workings more transparent, this would also help make models more reliable and consistent. To this end, we propose a representation learning framework called breakpoint modeling that allows for efficient and robust learning of this type. Given any text encoder and data marked with intermediate states (breakpoints) along with corresponding textual queries viewed as true/false propositions (i.e., the candidate intermediate beliefs of a model), our approach trains models in an efficient and end-to-end fashion to build intermediate representations that facilitate direct querying and training of beliefs at arbitrary points in text, alongside solving other end-tasks. We evaluate breakpoint modeling on a diverse set of NLU tasks including relation reasoning on Cluttr and narrative understanding on bAbI. Using novel proposition prediction tasks alongside these end-tasks, we show the benefit of our T5-based breakpoint transformer over strong conventional representation learning approaches in terms of processing efficiency, belief accuracy, and belief consistency, all with minimal to no degradation on the end-task. To show the feasibility of incorporating our belief tracker into more complex reasoning pipelines, we also obtain state-of-the-art performance on the three-tiered reasoning challenge for the recent TRIP benchmark (23-32% absolute improvement on Tasks 2-3).

pdf bib
DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Language Models
Gregor Betz | Kyle Richardson
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

In this paper, we present and implement a multi-dimensional, modular framework for performing deep argument analysis (DeepA2) using current pre-trained language models (PTLMs). ArgumentAnalyst – a T5 model [Raffel et al. 2020] set up and trained within DeepA2 – reconstructs argumentative texts, which advance an informal argumentation, as valid arguments: It inserts, e.g., missing premises and conclusions, formalizes inferences, and coherently links the logical reconstruction to the source text. We create a synthetic corpus for deep argument analysis, and evaluate ArgumentAnalyst on this new dataset as well as on existing data, specifically EntailmentBank [Dalvi et al. 2021]. Our empirical findings vindicate the overall framework and highlight the advantages of a modular design, in particular its ability to emulate established heuristics (such as hermeneutic cycles), to explore the model’s uncertainty, to cope with the plurality of correct solutions (underdetermination), and to exploit higher-order evidence.

pdf bib
Dyna-bAbI: unlocking bAbI’s potential with dynamic synthetic benchmarking
Ronen Tamari | Kyle Richardson | Noam Kahlon | Aviad Sar-shalom | Nelson F. Liu | Reut Tsarfaty | Dafna Shahaf
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics

While neural language models often perform surprisingly well on natural language understanding (NLU) tasks, their strengths and limitations remain poorly understood. Controlled synthetic tasks are thus an increasingly important resource for diagnosing model behavior. In this work we focus on story understanding, a core competency for NLU systems. However, the main synthetic resource for story understanding, the bAbI benchmark, lacks such a systematic mechanism for controllable task generation. We develop Dyna-bAbI, a dynamic framework providing fine-grained control over task generation in bAbI. We demonstrate our ideas by constructing three new tasks requiring compositional generalization, an important evaluation setting absent from the original benchmark. We tested both special-purpose models developed for bAbI as well as state-of-the-art pre-trained methods, and found that while both approaches solve the original tasks (99% accuracy), neither approach succeeded in the compositional generalization setting, indicating the limitations of the original training data. We explored ways to augment the original data, and found that though diversifying training data was far more useful than simply increasing dataset size, it was still insufficient for driving robust compositional generalization (with 70% accuracy for complex compositions). Our results underscore the importance of highly controllable task generators for creating robust NLU systems through a virtuous cycle of model and data development.

pdf bib
Hey AI, Can You Solve Complex Tasks by Talking to Agents?
Tushar Khot | Kyle Richardson | Daniel Khashabi | Ashish Sabharwal
Findings of the Association for Computational Linguistics: ACL 2022

Training giant models from scratch for each complex task is resource- and data-inefficient. To help develop models that can leverage existing systems, we propose a new challenge: Learning to solve complex tasks by communicating with existing agents (or models) in natural language. We design a synthetic benchmark, CommaQA, with three complex reasoning tasks (explicit, implicit, numeric) designed to be solved by communicating with existing QA agents. For instance, using text and table QA agents to answer questions such as “Who had the longest javelin throw from USA?”. We show that black-box models struggle to learn this task from scratch (accuracy under 50%) even with access to each agent’s knowledge and gold facts supervision. In contrast, models that learn to communicate with agents outperform black-box models, reaching scores of 100% when given gold decomposition supervision. However, we show that the challenge of learning to solve complex tasks by communicating with existing agents without relying on any auxiliary supervision or data still remains highly elusive. We will release CommaQA, along with a compositional generalization test split, to advance research in this direction.

pdf bib
Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts
Daniel Khashabi | Xinxi Lyu | Sewon Min | Lianhui Qin | Kyle Richardson | Sean Welleck | Hannaneh Hajishirzi | Tushar Khot | Ashish Sabharwal | Sameer Singh | Yejin Choi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Fine-tuning continuous prompts for target tasks has recently emerged as a compact alternative to full model fine-tuning. Motivated by these promising results, we investigate the feasibility of extracting a discrete (textual) interpretation of continuous prompts that is faithful to the problem they solve. In practice, we observe a “wayward” behavior between the task solved by continuous prompts and their nearest neighbor discrete projections: We can find continuous prompts that solve a task while being projected to an arbitrary text (e.g., definition of a different or even a contradictory task), while being within a very small (2%) margin of the best continuous prompt of the same size for the task. We provide intuitions behind this odd and surprising behavior, as well as extensive empirical analyses quantifying the effect of various parameters. For instance, for larger model sizes we observe higher waywardness, i.e, we can find prompts that more closely map to any arbitrary text with a smaller drop in accuracy. These findings have important implications relating to the difficulty of faithfully interpreting continuous prompts and their generalization across models and tasks, providing guidance for future progress in prompting language models.

2021

pdf bib
Critical Thinking for Language Models
Gregor Betz | Christian Voigt | Kyle Richardson
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic corpus of deductively valid arguments, and generate artificial argumentative texts to train CRiPT: a critical thinking intermediarily pre-trained transformer based on GPT-2. Significant transfer learning effects can be observed: Trained on three simple core schemes, CRiPT accurately completes conclusions of different, and more complex types of arguments, too. CRiPT generalizes the core argument schemes in a correct way. Moreover, we obtain consistent and promising results for NLU benchmarks. In particular, CRiPT’s zero-shot accuracy on the GLUE diagnostics exceeds GPT-2’s performance by 15 percentage points. The findings suggest that intermediary pre-training on texts that exemplify basic reasoning abilities (such as typically covered in critical thinking textbooks) might help language models to acquire a broad range of reasoning skills. The synthetic argumentative texts presented in this paper are a promising starting point for building such a “critical thinking curriculum for language models.”

pdf bib
Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models
Tushar Khot | Daniel Khashabi | Kyle Richardson | Peter Clark | Ashish Sabharwal
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a general framework called Text Modular Networks(TMNs) for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models. To ensure solvability of simpler tasks, TMNs learn the textual input-output behavior (i.e., language) of existing models through their datasets. This differs from prior decomposition-based approaches which, besides being designed specifically for each complex task, produce decompositions independent of existing sub-models. Specifically, we focus on Question Answering (QA) and show how to train a next-question generator to sequentially produce sub-questions targeting appropriate sub-models, without additional human annotation. These sub-questions and answers provide a faithful natural language explanation of the model’s reasoning. We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator. Our experiments show that ModularQA is more versatile than existing explainable systems for DROP and HotpotQA datasets, is more robust than state-of-the-art blackbox (uninterpretable) systems, and generates more understandable and trustworthy explanations compared to prior work.

pdf bib
Temporal Reasoning on Implicit Events from Distant Supervision
Ben Zhou | Kyle Richardson | Qiang Ning | Tushar Khot | Ashish Sabharwal | Dan Roth
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose TRACIE, a novel temporal reasoning dataset that evaluates the degree to which systems understand implicit events—events that are not mentioned explicitly in natural language text but can be inferred from it. This introduces a new challenge in temporal reasoning research, where prior work has focused on explicitly mentioned events. Human readers can infer implicit events via commonsense reasoning, resulting in a more comprehensive understanding of the situation and, consequently, better reasoning about time. We find, however, that state-of-the-art models struggle when predicting temporal relationships between implicit and explicit events. To address this, we propose a neuro-symbolic temporal reasoning model, SymTime, which exploits distant supervision signals from large-scale text and uses temporal rules to combine start times and durations to infer end times. SymTime outperforms strong baseline systems on TRACIE by 5%, and by 11% in a zero prior knowledge training setting. Our approach also generalizes to other temporal reasoning tasks, as evidenced by a gain of 1%-9% on MATRES, an explicit event benchmark.

pdf bib
Investigating Transfer Learning in Multilingual Pre-trained Language Models through Chinese Natural Language Inference
Hai Hu | He Zhou | Zuoyu Tian | Yiwen Zhang | Yina Patterson | Yanting Li | Yixin Nie | Kyle Richardson
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
MonaLog: a Lightweight System for Natural Language Inference Based on Monotonicity
Hai Hu | Qi Chen | Kyle Richardson | Atreyee Mukherjee | Lawrence S. Moss | Sandra Kuebler
Proceedings of the Society for Computation in Linguistics 2020

pdf bib
A Dataset for Tracking Entities in Open Domain Procedural Text
Niket Tandon | Keisuke Sakaguchi | Bhavana Dalvi | Dheeraj Rajagopal | Peter Clark | Michal Guerquin | Kyle Richardson | Eduard Hovy
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky, opaque, and clear. Previous formulations of this task provide the text and entities involved, and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples (entity, attribute, before-state, after-state) for each step, where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI, a high-quality (91.5% coverage as judged by humans and completely vetted), and large-scale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural real-world paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.

pdf bib
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
Atticus Geiger | Kyle Richardson | Christopher Potts
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.

pdf bib
What Does My QA Model Know? Devising Controlled Probes Using Expert Knowledge
Kyle Richardson | Ashish Sabharwal
Transactions of the Association for Computational Linguistics, Volume 8

Open-domain question answering (QA) involves many knowledge and reasoning challenges, but are successful QA models actually learning such knowledge when trained on benchmark QA tasks? We investigate this via several new diagnostic tasks probing whether multiple-choice QA models know definitions and taxonomic reasoning—two skills widespread in existing benchmarks and fundamental to more complex reasoning. We introduce a methodology for automatically building probe datasets from expert knowledge sources, allowing for systematic control and a comprehensive evaluation. We include ways to carefully control for artifacts that may arise during this process. Our evaluation confirms that transformer-based multiple-choice QA models are already predisposed to recognize certain types of structural linguistic knowledge. However, it also reveals a more nuanced picture: their performance notably degrades even with a slight increase in the number of “hops” in the underlying taxonomic hierarchy, and with more challenging distractor candidates. Further, existing models are far from perfect when assessed at the level of clusters of semantically connected probes, such as all hypernym questions about a single concept.

pdf bib
OCNLI: Original Chinese Natural Language Inference
Hai Hu | Kyle Richardson | Liang Xu | Lu Li | Sandra Kübler | Lawrence Moss
Findings of the Association for Computational Linguistics: EMNLP 2020

Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g.,SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world’s languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language.

pdf bib
CLUE: A Chinese Language Understanding Evaluation Benchmark
Liang Xu | Hai Hu | Xuanwei Zhang | Lu Li | Chenjie Cao | Yudong Li | Yechen Xu | Kai Sun | Dian Yu | Cong Yu | Yin Tian | Qianqian Dong | Weitang Liu | Bo Shi | Yiming Cui | Junyi Li | Jun Zeng | Rongzhao Wang | Weijian Xie | Yanting Li | Yina Patterson | Zuoyu Tian | Yiwen Zhang | He Zhou | Shaoweihua Liu | Zhe Zhao | Qipeng Zhao | Cong Yue | Xinrui Zhang | Zhengliang Yang | Kyle Richardson | Zhenzhong Lan
Proceedings of the 28th International Conference on Computational Linguistics

The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.cluebenchmarks.com

2018

pdf bib
Polyglot Semantic Parsing in APIs
Kyle Richardson | Jonathan Berant | Jonas Kuhn
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017b,a). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-the-art performance on the above datasets, and apply this method to two other benchmark SP tasks.

2017

pdf bib
Function Assistant: A Tool for NL Querying of APIs
Kyle Richardson | Jonas Kuhn
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

In this paper, we describe Function Assistant, a lightweight Python-based toolkit for querying and exploring source code repositories using natural language. The toolkit is designed to help end-users of a target API quickly find information about functions through high-level natural language queries, or descriptions. For a given text query and background API, the tool finds candidate functions by performing a translation from the text to known representations in the API using the semantic parsing approach of (Richardson and Kuhn, 2017). Translations are automatically learned from example text-code pairs in example APIs. The toolkit includes features for building translation pipelines and query engines for arbitrary source code projects. To explore this last feature, we perform new experiments on 27 well-known Python projects hosted on Github.

pdf bib
Learning Semantic Correspondences in Technical Documentation
Kyle Richardson | Jonas Kuhn
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals.

pdf bib
The Code2Text Challenge: Text Generation in Source Libraries
Kyle Richardson | Sina Zarrieß | Jonas Kuhn
Proceedings of the 10th International Conference on Natural Language Generation

We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction, and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.

2016

pdf bib
Learning to Make Inferences in a Semantic Parsing Task
Kyle Richardson | Jonas Kuhn
Transactions of the Association for Computational Linguistics, Volume 4

We introduce a new approach to training a semantic parser that uses textual entailment judgements as supervision. These judgements are based on high-level inferences about whether the meaning of one sentence follows from another. When applied to an existing semantic parsing task, they prove to be a useful tool for revealing semantic distinctions and background knowledge not captured in the target representations. This information is used to improve the quality of the semantic representations being learned and to acquire generic knowledge for reasoning. Experiments are done on the benchmark Sportscaster corpus (Chen and Mooney, 2008), and a novel RTE-inspired inference dataset is introduced. On this new dataset our method strongly outperforms several strong baselines. Separately, we obtain state-of-the-art results on the original Sportscaster semantic parsing task.

2014

pdf bib
UnixMan Corpus: A Resource for Language Learning in the Unix Domain
Kyle Richardson | Jonas Kuhn
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

We present a new resource, the UnixMan Corpus, for studying language learning it the domain of Unix utility manuals. The corpus is built by mining Unix (and other Unix related) man pages for parallel example entries, consisting of English textual descriptions with corresponding command examples. The commands provide a grounded and ambiguous semantics for the textual descriptions, making the corpus of interest to work on Semantic Parsing and Grounded Language Learning. In contrast to standard resources for Semantic Parsing, which tend to be restricted to a small number of concepts and relations, the UnixMan Corpus spans a wide variety of utility genres and topics, and consists of hundreds of command and domain entity types. The semi-structured nature of the manuals also makes it easy to exploit other types of relevant information for Grounded Language Learning. We describe the details of the corpus and provide preliminary classification results.

2013

pdf bib
An Automatic Method for Building a Data-to-Text Generator
Sina Zarriess | Kyle Richardson
Proceedings of the 14th European Workshop on Natural Language Generation

2012

pdf bib
Light Textual Inference for Semantic Parsing
Kyle Richardson | Jonas Kuhn
Proceedings of COLING 2012: Posters