Siva Reddy


pdf pdf bib
Learning an Executable Neural Semantic Parser
Jianpeng Cheng | Siva Reddy | Vijay Saraswat | Mirella Lapata

This article describes a neural semantic parser that maps natural language utterances onto logical forms that can be executed against a task-specific environment, such as a knowledge base or a database, to produce a response. The parser generates tree-structured logical forms with a transition-based approach, combining a generic tree-generation algorithm with domain-general grammar defined by the logical language. The generation process is modeled by structured recurrent neural networks, which provide a rich encoding of the sentential context and generation history for making predictions. To tackle mismatches between natural language and logical form tokens, various attention mechanisms are explored. Finally, we consider different training settings for the neural semantic parser, including fully supervised training where annotated logical forms are given, weakly supervised training where denotations are provided, and distant supervision where only unlabeled sentences and a knowledge base are available. Experiments across a wide range of data sets demonstrate the effectiveness of our parser.

pdf pdf bib
CoQA: A Conversational Question Answering Challenge
Siva Reddy | Danqi Chen | Christopher D. Manning

Humans gather information through conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets (e.g., coreference and pragmatic reasoning). We evaluate strong dialogue and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating that there is ample room for improvement. We present CoQA as a challenge to the community at


pdf pdf bib
Learning Typed Entailment Graphs with Global Soft Constraints
Mohammad Javad Hosseini | Nathanael Chambers | Siva Reddy | Xavier R. Holt | Shay B. Cohen | Mark Johnson | Mark Steedman

This paper presents a new method for learning typed entailment graphs from text. We extract predicate-argument structures from multiple-source news corpora, and compute local distributional similarity scores to learn entailments between predicates with typed arguments (e.g., person contracted disease). Previous work has used transitivity constraints to improve local decisions, but these constraints are intractable on large graphs. We instead propose a scalable method that learns globally consistent similarity scores based on new soft constraints that consider both the structures across typed entailment graphs and inside each graph. Learning takes only a few hours to run over 100K predicates and our results show large improvements over local similarity scores on two entailment data sets. We further show improvements over paraphrases and entailments from the Paraphrase Database, and prior state-of-the-art entailment graphs. We show that the entailment graphs improve performance in a downstream task.


pdf pdf bib
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
Daniel Zeman | Martin Popel | Milan Straka | Jan Hajič | Joakim Nivre | Filip Ginter | Juhani Luotolahti | Sampo Pyysalo | Slav Petrov | Martin Potthast | Francis Tyers | Elena Badmaeva | Memduh Gokirmak | Anna Nedoluzhko | Silvie Cinková | Jan Hajič jr. | Jaroslava Hlaváčová | Václava Kettnerová | Zdeňka Urešová | Jenna Kanerva | Stina Ojala | Anna Missilä | Christopher D. Manning | Sebastian Schuster | Siva Reddy | Dima Taji | Nizar Habash | Herman Leung | Marie-Catherine de Marneffe | Manuela Sanguinetti | Maria Simi | Hiroshi Kanayama | Valeria de Paiva | Kira Droganova | Héctor Martínez Alonso | Çağrı Çöltekin | Umut Sulubacak | Hans Uszkoreit | Vivien Macketanz | Aljoscha Burchardt | Kim Harris | Katrin Marheinecke | Georg Rehm | Tolga Kayadelen | Mohammed Attia | Ali Elkahky | Zhuoran Yu | Emily Pitler | Saran Lertpradit | Michael Mandl | Jesse Kirchner | Hector Fernandez Alcalde | Jana Strnadová | Esha Banerjee | Ruli Manurung | Antonio Stella | Atsuko Shimada | Sookyoung Kwak | Gustavo Mendonça | Tatiana Lando | Rattima Nitisaroj | Josie Li

The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, the task was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe how the data sets were prepared, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.

pdf pdf bib
Learning Structured Natural Language Representations for Semantic Parsing
Jianpeng Cheng | Siva Reddy | Vijay Saraswat | Mirella Lapata

We introduce a neural semantic parser which is interpretable and scalable. Our model converts natural language utterances to intermediate, domain-general natural language representations in the form of predicate-argument structures, which are induced with a transition system and subsequently mapped to target domains. The semantic parser is trained end-to-end using annotated logical forms or their denotations. We achieve the state of the art on SPADES and GRAPHQUESTIONS and obtain competitive results on GEOQUERY and WEBQUESTIONS. The induced predicate-argument structures shed light on the types of representations useful for semantic parsing and how these are different from linguistically motivated ones.

pdf pdf bib
Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks
Rajarshi Das | Manzil Zaheer | Siva Reddy | Andrew McCallum

Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. Universal schema can support reasoning on the union of both structured KBs and unstructured text by aligning them in a common embedded space. In this paper we extend universal schema to natural language question answering, employing Memory networks to attend to the large body of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion on question-answer pairs. Evaluation results on Spades fill-in-the-blank question answering dataset show that exploiting universal schema for question answering is better than using either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1 points.

pdf pdf bib
Universal Dependencies to Logical Form with Negation Scope
Federico Fancellu | Siva Reddy | Adam Lopez | Bonnie Webber

Many language technology applications would benefit from the ability to represent negation and its scope on top of widely-used linguistic resources. In this paper, we investigate the possibility of obtaining a first-order logic representation with negation scope marked using Universal Dependencies. To do so, we enhance UDepLambda, a framework that converts dependency graphs to logical forms. The resulting UDepLambda¬ is able to handle phenomena related to scope by means of an higher-order type theory, relevant not only to negation but also to universal quantification and other complex semantic phenomena. The initial conversion we did for English is promising, in that one can represent the scope of negation also in the presence of more complex phenomena such as universal quantifiers.

pdf pdf bib
Predicting Target Language CCG Supertags Improves Neural Machine Translation
Maria Nădejde | Siva Reddy | Rico Sennrich | Tomasz Dwojak | Marcin Junczys-Dowmunt | Philipp Koehn | Alexandra Birch

pdf pdf bib
Universal Semantic Parsing
Siva Reddy | Oscar Täckström | Slav Petrov | Mark Steedman | Mirella Lapata

Universal Dependencies (UD) offer a uniform cross-lingual syntactic representation, with the aim of advancing multilingual applications. Recent work shows that semantic parsing can be accomplished by transforming syntactic dependencies to logical forms. However, this work is limited to English, and cannot process dependency graphs, which allow handling complex phenomena such as control. In this work, we introduce UDepLambda, a semantic interface for UD, which maps natural language to logical forms in an almost language-independent fashion and can process dependency graphs. We perform experiments on question answering against Freebase and provide German and Spanish translations of the WebQuestions and GraphQuestions datasets to facilitate multilingual evaluation. Results show that UDepLambda outperforms strong baselines across languages and datasets. For English, it achieves a 4.9 F1 point improvement over the state-of-the-art on GraphQuestions.

pdf pdf bib
Learning to Paraphrase for Question Answering
Li Dong | Jonathan Mallinson | Siva Reddy | Mirella Lapata

Question answering (QA) systems are sensitive to the many different ways natural language expresses the same information need. In this paper we turn to paraphrases as a means of capturing this knowledge and present a general framework which learns felicitous paraphrases for various QA tasks. Our method is trained end-to-end using question-answer pairs as a supervision signal. A question and its paraphrases serve as input to a neural scoring model which assigns higher weights to linguistic expressions most likely to yield correct answers. We evaluate our approach on QA over Freebase and answer sentence selection. Experimental results on three datasets show that our framework consistently improves performance, achieving competitive results despite the use of simple QA models.


pdf pdf bib
Question Answering on Freebase via Relation Extraction and Textual Evidence
Kun Xu | Siva Reddy | Yansong Feng | Songfang Huang | Dongyan Zhao

pdf pdf bib
Paraphrase Generation from Latent-Variable PCFGs for Semantic Parsing
Shashi Narayan | Siva Reddy | Shay B. Cohen

pdf pdf bib
Assessing Relative Sentence Complexity using an Incremental CCG Parser
Bharat Ram Ambati | Siva Reddy | Mark Steedman

pdf pdf bib
Transforming Dependency Structures to Logical Forms for Semantic Parsing
Siva Reddy | Oscar Täckström | Michael Collins | Tom Kwiatkowski | Dipanjan Das | Mark Steedman | Mirella Lapata

The strongly typed syntax of grammar formalisms such as CCG, TAG, LFG and HPSG offers a synchronous framework for deriving syntactic structures and semantic logical forms. In contrast—partly due to the lack of a strong type system—dependency structures are easy to annotate and have become a widely used form of syntactic analysis for many languages. However, the lack of a type system makes a formal mechanism for deriving logical forms from dependency structures challenging. We address this by introducing a robust system based on the lambda calculus for deriving neo-Davidsonian logical forms from dependency trees. These logical forms are then used for semantic parsing of natural language to Freebase. Experiments on the Free917 and Web-Questions datasets show that our representation is superior to the original dependency trees and that it outperforms a CCG-based representation on this task. Compared to prior work, we obtain the strongest result to date on Free917 and competitive results on WebQuestions.

pdf pdf bib
Evaluating Induced CCG Parsers on Grounded Semantic Parsing
Yonatan Bisk | Siva Reddy | John Blitzer | Julia Hockenmaier | Mark Steedman


pdf pdf bib
Hindi Word Sketches
Anil Krishna Eragani | Varun Kuchib Hotla | Dipti Misra Sharma | Siva Reddy | Adam Kilgarriff

pdf pdf bib
Large-scale Semantic Parsing without Question-Answer Pairs
Siva Reddy | Mirella Lapata | Mark Steedman

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the Free917 and WebQuestions benchmark datasets show our semantic parser improves over the state of the art.


pdf pdf bib
DSS: Text Similarity Using Lexical Alignments of Form, Distributional Semantics and Grammatical Relations
Diana McCarthy | Spandana Gella | Siva Reddy

pdf bib
Word Sketches for Turkish
Bharat Ram Ambati | Siva Reddy | Adam Kilgarriff


pdf pdf bib
An Empirical Study on Compositionality in Compound Nouns
Siva Reddy | Diana McCarthy | Suresh Manandhar

pdf pdf bib
Dynamic and Static Prototype Vectors for Semantic Composition
Siva Reddy | Ioannis Klapaftis | Diana McCarthy | Suresh Manandhar

pdf pdf bib
Exemplar-Based Word-Space Model for Compositionality Detection: Shared Task System Description
Siva Reddy | Diana McCarthy | Suresh Manandhar | Spandana Gella

pdf pdf bib
Cross Language POS Taggers (and other Tools) for Indian Languages: An Experiment with Kannada using Telugu Resources
Siva Reddy | Serge Sharoff


pdf pdf bib
WSD as a Distributed Constraint Optimization Problem
Siva Reddy | Abhilash Inumella

pdf pdf bib
IIITH: Domain Specific Word Sense Disambiguation
Siva Reddy | Abhilash Inumella | Diana McCarthy | Mark Stevenson

pdf bib
A Corpus Factory for Many Languages
Adam Kilgarriff | Siva Reddy | Jan Pomikálek | Avinesh PVS


pdf pdf bib
All Words Unsupervised Semantic Category Labeling for Hindi
Siva Reddy | Abhilash Inumella | Rajeev Sangal | Soma Paul