Lexical Normalisation of Short Text Messages: Makn Sens a \#twitter

Bo Han and Timothy Baldwin
The University of Melbourne


Abstract

Twitter provides access to large volumes of data in real time, but is notoriously noisy, hampering its utility for NLP. In this paper, we target out-of-vocabulary words in short text messages and propose a method for identifying and normalising ill-formed words. Our method uses a classifier to detect ill-formed words, and generates correction candidates based on morphophonemic similarity. Both word similarity and context are then exploited to select the most probable correction candidate for the word. The proposed method doesn't require any annotations, and achieves state-of-the-art performance over an SMS corpus and a novel dataset based on Twitter.




Full paper: http://www.aclweb.org/anthology/P/P11/.pdf