Difference between revisions of "RTE Knowledge Resources"
(215 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
− | + | Knowledge resources have shown their relevance for applied semantic inference, and are extensively used by applied inference systems, such as those developed within the Textual Entailment framework.<br> | |
<br> | <br> | ||
− | {|class="wikitable sortable" cellpadding="3" cellspacing="0 | + | This page presents a list of the knowledge resources used by systems that have participated in the last RTE challenges. The first table lists the publicly available resources, the second one lists unpublished resources. Both tables are sortable by Resource name, type, author and number of users.<br> |
+ | <br> | ||
+ | RTE Participants are encouraged to add information about all kind of knowledge resources used, from standard existing resources (e.g. WordNet) to knowledge collections created for specific purposes, which can be made available to the community.<br> | ||
+ | <br> | ||
+ | __TOC__ | ||
+ | <br> | ||
+ | === Call for Resources === | ||
+ | |||
+ | In order to help the research, all the participants are invited to contribute, sharing their own resources with the RTE community. | ||
+ | <br> | ||
+ | Making the resources available to be used by other systems has several advantages. On the one hand, it helps improve the TE technology; on the other hand, it offers an opportunity to further test and evaluate the resource. | ||
+ | <br> | ||
+ | <br> | ||
+ | *[[RTE6 - Call for Resources]] | ||
+ | *[[RTE7 - Call for Resources]] | ||
+ | <br> | ||
+ | === Ablation Tests === | ||
+ | An ablation test consists of removing one module at a time from a system, and rerunning the system on the test set with the other modules, except the one tested. | ||
+ | <br> | ||
+ | Ablation test are meant to help better understand the relevance of the knowledge resources used by RTE systems, and evaluate the contribution of each of them to the systems' performances. In fact, comparing the results achieved in the ablation tests to those obtained by the systems as a whole allows assessing the contribution given by each single resource. | ||
+ | <br> | ||
+ | <br> | ||
+ | *[[RTE5 - Ablation Tests]] | ||
+ | *[[RTE6 - Ablation Tests]] | ||
+ | *[[RTE7 - Ablation Tests]] | ||
+ | <br> | ||
+ | |||
+ | === Publicly available Resources === | ||
+ | {|class="wikitable sortable" cellpadding="3" cellspacing="0" border="1" | ||
+ | |||
|- bgcolor="#CDCDCD" | |- bgcolor="#CDCDCD" | ||
− | ! Resource | + | ! width="80"|Resource |
− | ! Type | + | ! width="50"|Type |
− | ! Author | + | ! width="150"|Author |
− | ! class="unsortable"|Brief description | + | ! class="unsortable" width="300"|Brief description |
− | ! | + | ! width="45"|<small>PAST Users <ref name:"rtethree">RTE-3 data have been provided by participants by means of a questionnaire.</ref></small> |
− | ! class="unsortable"| | + | ! width="45"|<small>RTE4 Users<ref name:"rtefour">RTE-4 data have been provided by participants and have been integrated with information extracted from the related proceedings.</ref></small> |
+ | ! width="45"|<small>RTE5 Users<ref name:"rtefive">RTE-5 data have been provided by participants and have been integrated with information extracted from the related proceedings.</ref></small> | ||
+ | ! width="45"|<small>RTE6 Users<ref name:"rtesix">RTE-6 data have been provided by participants and have been integrated with information extracted from the related proceedings.</ref></small> | ||
+ | ! class="unsortable" width="30"|<small>Usage info</small> | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
| [[WordNet]] | | [[WordNet]] | ||
− | | Lexical | + | | Lexical DB |
| Princeton University | | Princeton University | ||
| Lexical database of English nouns, verbs, adjectives and adverbs | | Lexical database of English nouns, verbs, adjectives and adverbs | ||
− | | | + | | style="text-align: center;"|3 |
− | | [[WordNet RTE Users|Users]] | + | | style="text-align: center;"|21 |
+ | | style="text-align: center;"|18 | ||
+ | |style="text-align: center;"| 22 | ||
+ | | [[WordNet - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://xwn.hlt.utdallas.edu/index.html eXtended Wordnet] | ||
+ | | Lexical DB | ||
+ | | Human Language Technology Research Institute, University of Texas at Dallas | ||
+ | | Extension of WordNet based on the exploitation of the information contained in WordNet definitional glosses: the glosses are syntactically parsed, transformed into logic forms and content words are semantically disambiguated. The Extended Wordnet is an ongoing project. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|2 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[eXtended WordNet - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://ai.stanford.edu/~rion/swn/ Augmented Wordnet] | ||
+ | | Lexical DB | ||
+ | | Stanford University | ||
+ | | The resource is the result of the application of a learning algorithm for inducing semantic taxonomies from parsed text. The algorithm automatically acquires items of world knowledge, and uses these to produce significantly enhanced versions of WordNet (up to 40,000 synsets more). | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Augmented Wordnet - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
| [http://verbs.colorado.edu/~mpalmer/projects/verbnet.html Verbnet] | | [http://verbs.colorado.edu/~mpalmer/projects/verbnet.html Verbnet] | ||
− | | Lexical | + | | Lexical DB |
| University of Colorado Boulder | | University of Colorado Boulder | ||
− | | | + | | Lexicon for English verbs organized into classes extending Levin (1993) classes through refinement and addition of subclasses to achieve syntactic and semantic coherence among members of a class |
− | | | + | | style="text-align: center;"|2 |
− | | [[Verbnet RTE Users|Users]] | + | | style="text-align: center;"|2 |
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Verbnet - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
| [[VerbOcean]] | | [[VerbOcean]] | ||
− | | Lexical | + | | Lexical DB |
− | | University of Southern California | + | | Information Sciences Institute, University of Southern California |
| Broad-coverage semantic network of verbs | | Broad-coverage semantic network of verbs | ||
− | | | + | | style="text-align: center;"|2 |
− | | [[VerbOcean RTE Users|Users]] | + | | style="text-align: center;"|3 |
+ | | style="text-align: center;"|6 | ||
+ | |style="text-align: center;"| 7 | ||
+ | | [[VerbOcean - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
| [http://framenet.icsi.berkeley.edu/ FrameNet] | | [http://framenet.icsi.berkeley.edu/ FrameNet] | ||
− | | Lexical | + | | Lexical DB |
− | | | + | | ICSI (International Computer Science Institute) - Berkley University |
− | | | + | | Lexical resource for English words, based on frame semantics (valences) and supported by corpus evidence |
− | | 2 | + | | style="text-align: center;"|1 |
− | | [[Framenet RTE Users|Users]] | + | | style="text-align: center;"|1 |
+ | | style="text-align: center;"|2 | ||
+ | |style="text-align: center;"| 3 | ||
+ | | [[Framenet - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
− | | [http://nlp.cs.nyu.edu/meyers/NomBank.html NomBank] | + | | [http://nlp.cs.nyu.edu/meyers/NomBank.html NomBank] |
− | | Lexical | + | | Lexical DB |
| New York University | | New York University | ||
− | | Lexical | + | | Lexical resource containing syntactic frames for nouns, extracted from annotated corpora |
− | | 2 | + | | style="text-align: center;"|2 |
− | | [[NomBank | + | | style="text-align: center;"|1 |
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[NomBank Resource - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://verbs.colorado.edu/~mpalmer/projects/ace.html PropBank] | ||
+ | | Lexical DB | ||
+ | | University of Colorado Boulder | ||
+ | | Lexical resource containing syntactic frames for verbs, extracted from annotated corpora | ||
+ | | style="text-align: center;"|2 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[PropBank Resource - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
| [http://nlp.cs.nyu.edu/nomlex/index.html Nomlex] Plus | | [http://nlp.cs.nyu.edu/nomlex/index.html Nomlex] Plus | ||
− | | Lexical | + | | Lexical DB |
− | | | + | | New York University |
| Dictionary of English nominalizations: it describes the allowed complements for a nominalization and relates the nominal complements to the arguments of the corresponding verb | | Dictionary of English nominalizations: it describes the allowed complements for a nominalization and relates the nominal complements to the arguments of the corresponding verb | ||
− | | 1 | + | | style="text-align: center;"|0 |
− | | [[Nomlex Plus RTE Users|Users]] | + | | style="text-align: center;"|1 |
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Nomlex Plus - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.cs.ualberta.ca/~lindek/downloads.htm Dekang Lin’s Thesaurus] | ||
+ | | Thesaurus | ||
+ | | University of Alberta | ||
+ | | Thesaurus automatically constructed using a parsed corpus, based on distributional similarity scores | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 2 | ||
+ | | [[Dekang Lin’s Thesaurus - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
− | | | + | | [http://icon.shef.ac.uk/Moby/mthes.html Grady Ward's Moby Thesaurus] |
− | | | + | | Thesaurus |
− | | [http://www. | + | | University of Sheffield |
− | | | + | | Thesaurus containing 30,260 root words, with 2,520,264 synonyms and related terms. Grady Ward placed this thesaurus in the public domain in 1996. |
− | | 1 | + | | style="text-align: center;"|0 |
− | | [[ | + | | style="text-align: center;"|0 |
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Grady Ward's Moby Thesaurus - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://en.wikipedia.org/wiki/Roget%27s_Thesaurus Roget's Thesaurus] | ||
+ | | Thesaurus | ||
+ | | Peter Mark Roget (Electronic version distributed by University of Chicago) | ||
+ | | Roget's Thesaurus is a widely-used English thesaurus, created by Dr. Peter Mark Roget in 1805. The original edition had 15,000 words, and each new edition has been larger. The electronic edition ([http://machaut.uchicago.edu/rogets version 1.02]) is made available by University of Chicago. | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Roget's Thesaurus - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.wikipedia.org/ Wikipedia] | ||
+ | | Encyclopedia | ||
+ | | | ||
+ | | Free encyclopedia. Used for extraction of lexical-semantic rules (from its more structured parts), named entity recognition, geographical information etc. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|3 | ||
+ | | style="text-align: center;"|6 | ||
+ | |style="text-align: center;"| 6 | ||
+ | | [[Wikipedia - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.umbel.org/ Umbel] | ||
+ | | Ontology | ||
+ | | Structured Dynamics LLC, Coralville, IA | ||
+ | | UMBEL stands for Upper Mapping and Binding Exchange Layer and is a lightweight ontology structure for relating Web content and data to a standard set of subject concepts | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Umbel - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.mpi-inf.mpg.de/yago-naga/yago/ YAGO] | ||
+ | | Ontology | ||
+ | | Max-Planck Institute for Informatics, Saarbrücken, Germany | ||
+ | | Light-weight and extensible ontology. It contains more than 2 million entities and 20 million facts about these entities. The facts have been automatically extracted from Wikipedia and unified with WordNet. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[YAGO - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://dbpedia.org/About DBpedia] | ||
+ | | Ontology | ||
+ | | Open community project | ||
+ | | DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. The DBpedia knowledge base currently describes more than 2.9 million things in 91 different languages and consists of 479 million pieces of information. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[DBpedia - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
| [[DIRT Paraphrase Collection]] | | [[DIRT Paraphrase Collection]] | ||
− | | | + | | Collection of paraphrases |
− | | | + | | University of Alberta |
− | | Output of the | + | | DIRT (Discovery of Inference Rules from Text) is both an algorithm and a resulting knowledge collection. The DIRT knowledge collection is the output of the DIRT algorithm over a 1GB set of newspaper text. |
− | | | + | | style="text-align: center;"|2 |
− | | [[ | + | | style="text-align: center;"|4 |
+ | | style="text-align: center;"|3 | ||
+ | |style="text-align: center;"| 4 | ||
+ | | [[DIRT Paraphrase Collection - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [[TEASE]] Collection | ||
+ | | Collection of Entailment Rules | ||
+ | | Bar-Ilan University | ||
+ | | Output of the TEASE algorithm | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Tease Collection - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://badc.nerc.ac.uk/help/abbrevs.html BADC Acronym and Abbreviation List] | ||
+ | | Word List | ||
+ | | BADC (British Atmospheric Data Centre) | ||
+ | | Acronym and Abbreviation List | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[BADC Acronym and Abbreviation List - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://clipdemos.umiacs.umd.edu/catvar/ Catvar The Categorial Variation Database (English)] | ||
+ | | Word List | ||
+ | | University of Maryland | ||
+ | | A Categorial-Variation Database (or Catvar) is a database of clusters of uninflected words (lexemes) and their categorial (i.e. part-of-speech) variants. The database was developed for English using a combination of resources and algorithms, including the LCS Verb and Preposition Databases (Dorr 2001), the Brown Corpus section of the Penn Treebank (Marcus et al. 1994), an English morphological analysis lexicon developed for PC-Kimmo (ENGLEX) (Antworth 1990), WordNet1.6 (Fellbaum 1998), an English Verb-Noun list extracted from Nomlex (Macleod et al. 1998), a similar list extracted from LDOCE (Procter 1978) and the Porter stemmer (Porter 1980). | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 1 | ||
+ | | [[Categorial-Variation Database - RTE Users|Users]] | ||
+ | |||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.acronym-guide.com/ Acronym Guide] | ||
+ | | Word List | ||
+ | | Acronym-Guide.com | ||
+ | | Acronym and Abbreviation Lists for English, branched in thematic directories | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|3 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Acronym Guide - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13 Web1T 5-grams] | ||
+ | | Word list | ||
+ | | Linguistic Data Consortium, University of Pennsylvania; Google Inc. | ||
+ | | Data set containing English word n-grams and their observed frequency counts. The n-gram counts were generated from approximately 1 trillion word tokens of text from publicly accessible Web pages | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Web1T - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.coli.uni-saarland.de/%7Erwang/resources/RTE3_RTE4_NGD.zip Normalized Google Distance (RTE3&RTE4)] | ||
+ | | Word Pair Co-occurrence | ||
+ | | Saarland University | ||
+ | | Co-occurrence of the word pairs in RTE3 and RTE4 using Normalized Google Distance (Cilibrasi and Vitanyi, 2004). The word pairs are all the possible combinations of content words in T and H. In practice, we used [http://m.www.yahoo.com/ Yahoo!] as the search engine. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Normalized Google Distance (RTE3&RTE4)- RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.coli.uni-saarland.de/%7Erwang/resources/RTE5_NGD.zip Normalized Google Distance (RTE5)] | ||
+ | | Word Pair Co-occurrence | ||
+ | | Saarland University | ||
+ | | Co-occurrence of the word pairs in RTE3 and RTE4 using Normalized Google Distance (Cilibrasi and Vitanyi, 2004). The word pairs are all the possible combinations of content words in T and H. In practice, we used [http://m.www.yahoo.com/ Yahoo!] as the search engine. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Normalized Google Distance (RTE5)- RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://geonames.usgs.gov/index.html GNIS - Geographic Names Information System] | ||
+ | | Gazetteer | ||
+ | | USGS (United States Geological Survey) | ||
+ | | Database containing the Federal and national standard toponyms for USA, associated areas and Antarctica | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[GNIS - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
− | | [http:// | + | | [http://www.geonames.org/ Geonames] |
− | | | + | | Gazetteer |
− | |||
| | | | ||
+ | | Database containing eight million geographical names. It is integrating geographical data such as names of places in various languages, elevation, population and others from various sources. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Geonames - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://nlp.cs.nyu.edu/paraphrase/ Sekine's Paraphrase Database] | ||
+ | | Collection of paraphrases | ||
+ | | Department of Computer Science, New York University | ||
+ | | Data-base created using Sekine's method, NOT cleaned up by human. It includes 19,975 sets of paraphrases with 191,572 phrases. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Sekine's Paraphrase Database - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://research.microsoft.com/research/downloads/Details/607D14D9-20CD-47E3-85BC-A2F65CD28042/Details.aspx Microsoft Research Paraphrase Corpus] | ||
+ | | Collection of paraphrases | ||
+ | | Microsoft Research | ||
+ | | Text file containing 5800 pairs of sentences which have been extracted from news sources on the web, along with human annotations indicating whether each pair captures a paraphrase/semantic equivalence relationship. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Microsoft Research Paraphrase Corpus - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.cs.cornell.edu/~cristian/Without_a_doubt_-_Data.html Downward entailing operators] | ||
+ | | Collection of entailing operators | ||
+ | | Department of Computer Science, Cornell University, Ithaca NY | ||
+ | | System output of an unsupervised algorithm recovering many Downward Entailing operators, like 'doubt'. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[Downward entailing operators - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | |[http://u.cs.biu.ac.il/~nlp/downloads/WikiRules.html WikiRules!] | ||
+ | | Lexical Reference rule-base | ||
+ | | Bar-Ilan University | ||
+ | | Extraction of about 8 million lexical reference rules from the text body (first sentence) and from metadata (links, redirects, parentheses) of Wikipedia. Provides better performance than other automatically constructed resources and comparable performance to WordNet. Offers complementary knowledge to WordNet. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|1 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[WikiRules! - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | |[http://www.cs.utexas.edu/users/pclark/dart/ DART] | ||
+ | | Collection of "world knowledge" propositions | ||
+ | | Boeing Research and Technology | ||
+ | | 23 million tuples such as "airplanes can fly to airports", "rivers can flood" collected from abstracted parse trees. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[DART - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | |[http://cs.biu.ac.il/~nlp/downloads/FRED.html FRED] | ||
+ | | FrameNet-derived entailment rule-base | ||
+ | | Bar-Ilan University | ||
+ | | This package contains the outputs of the FRED algorithm which extracts entailment rules from FrameNet. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[FRED - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | |[http://u.cs.biu.ac.il/~nlp/downloads/DIRECT.html DIRECT] | ||
+ | | Directional Distributional Term-Similarity Resource | ||
+ | | Bar-Ilan University | ||
+ | | This is a resource of directional distributional term-similarity rules (mostly lexical entailment rules) automatically extracted using the inclusion relation as described in (Kotlerman et.al., ACL-09). | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[DIRECT - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | |[http://u.cs.biu.ac.il/~nlp/downloads/binaryDirt.html binaryDIRT] | ||
+ | | Entailment rules between binary templates using DIRT algorithm | ||
+ | | Bar-Ilan University | ||
+ | | This resource contains entailment rules over binary templates learned over the Reuters corpus using | ||
+ | the DIRT algorithm of Lin and Pantel. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[BinaryDIRT- RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | |[http://u.cs.biu.ac.il/~nlp/downloads/unaryBInc.html unaryBInc] | ||
+ | | Entailment rules between unary templates using BInc algorithm | ||
+ | | Bar-Ilan University | ||
+ | | This resource contains entailment rules over unary templates learned over the Reuters corpus using | ||
+ | the BInc algorithm of Szpektor and Dagan (2008). | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | |style="text-align: center;"| 0 | ||
+ | | [[unaryBInc- RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | ''New resource'' | ||
| | | | ||
| | | | ||
+ | | ''Participants are encouraged to contribute'' | ||
+ | | style="text-align: center;"| | ||
+ | | style="text-align: center;"| | ||
+ | | style="text-align: center;"| | ||
+ | |style="text-align: center;"| | ||
+ | | [[New Resource2 - RTE Users|Users]] | ||
+ | |||
+ | |} | ||
+ | <br> | ||
+ | <br> | ||
+ | |||
+ | === Not available Resources === | ||
+ | The following table lists the unpublished resources used by RTE participants. Some of them have been developed by Users themselves specifically for RTE. Interested people may turn to authors to obtain further information. | ||
+ | <br> | ||
+ | {|class="wikitable sortable" cellpadding="3" cellspacing="0" border="1" | ||
+ | |||
+ | |- bgcolor="#CDCDCD" | ||
+ | ! width="80"|Resource | ||
+ | ! width="50"|Type | ||
+ | ! width="180"|Author | ||
+ | ! class="unsortable" width="500"|Brief description | ||
+ | ! width="30"|<small>PAST Users</small> | ||
+ | ! width="30"|<small>RTE4 Users</small> | ||
+ | ! width="30"|<small>RTE5 Users</small> | ||
+ | ! width="30"|<small>RTE6 Users</small> | ||
+ | ! class="unsortable" width="30"|<small>Usage info</small> | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | [http://www.parc.com/ PARC] Polarity Lexicon | ||
+ | | Lexical DB | ||
+ | | PARC - Palo Alto Research Center | ||
+ | | Verbs classification with respect to semantic polarity | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Parc Polarity Lexicon - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | Gazetteer from [http://trec.nist.gov/ TREC] | ||
+ | | Gazetteer | ||
+ | | NIST - National Institute of Standards and Technology | ||
+ | | Cities and other geographical names | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Gazetteer from TREC - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | DFKI Geographic Ontology<br>''(to be released)'' | ||
+ | | Ontology | ||
+ | | DFKI - German Research Center for Artificial Intelligence | ||
+ | | Ontology containing geographic terms and two kinds of relations: the directional ''part-of'' relation, and the ''equal'' relation for synonyms and abbreviations of the same geographic area (e.g ''the United Kingdom'', ''the UK'', ''Great Britain'', etc.) | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Geographic Ontology - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | ''Geo'' | ||
+ | | Collection of Entailment Rules | ||
+ | | Bar-Ilan University; Tel-Aviv University | ||
+ | | Meronymy entailment rules, based on TREC’s TIPSTER gazetteer. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Geo - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | ''Regex'' | ||
+ | | Collection of Entailment rules | ||
+ | | Bar-Ilan University; Tel-Aviv University | ||
+ | | Small set of entailment rules based on regular expressions, intended to address lexical variability involving temporal phrases | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Regex - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | Syntactic rule base <br>''(to be released)'' | ||
+ | | Collection of Entailment Rules | ||
+ | | Bar-Ilan University; Tel-Aviv University | ||
+ | | A manually-composed collection of entailment rules which define parse tree transformations. The rules cover generic syntactic phenomena such as appositions, conjunctions, passive, relative clause, etc. (Bar-Haim et al., AAAI-07) | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Syntactic rule base - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | Polarity rule base <br>''(to be released)'' | ||
+ | | Collection of Entailment Rules | ||
+ | | Bar-Ilan University; Tel-Aviv University | ||
+ | | A manually-composed collection of entailment rules which detect predicates whose polarity is negative (e.g. didn't dance) or unknown (e.g. plans to dance). The rules capture diverse phenomena that affect polarity, e.g. verbal negation, modal verbs, conditionals, and certain verbs that induce negative or "unknown" polarity context. The latter were taken mainly from VerbNet. Extends a resource described in (Bar-Haim et al., AAAI-07) | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Polarity rule base - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | Lexical-Syntactic rule base | ||
+ | | Collection of Entailment Rules | ||
+ | | Bar-Ilan University; Tel-Aviv University | ||
+ | | Extract lexical-syntactic entailment rules for predicates (verbal and nominal), including argument mapping. The resource is based on WordNet, Nomlex-Plus and Unary DIRT (Szpektor and Dagan, Coling 08) | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Lexical-Syntactic rule base - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | OPENU Collection | ||
+ | | Collection of Entailment Rules and Patterns | ||
+ | | Open University | ||
+ | | Collections of rules, patterns etc. for RTE purpose, extracted from Reuter corpus parsed using Minipar. | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[OPENU Collection - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | ''Abbr'' | ||
+ | | Collection of rules for abbreviation | ||
+ | | Bar-Ilan University; Tel-Aviv University | ||
+ | | 2000 Abbreviation rules, extracted from [http://badc.nerc.ac.uk/help/abbrevs.html BADC] and [http://www.acronym-guide.com/ Acronym Guide] | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[Abbr - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | UAIC Negation_list | ||
+ | | Negation rules | ||
+ | | „Al. I. Cuza“ University, Iasi, Romania | ||
+ | | List of negative terms and words (verbs, adjectives, nouns) affecting modality or factuality of a infinitive verb preceded by the particle "to" (e.g. "believe","necessary", "attempt") | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[UAIC Negation_list - RTE Users|Users]] | ||
+ | |||
+ | |- bgcolor="#ECECEC" "align="left" | ||
+ | | DLSIUAES Negation_list | ||
+ | | List of negative terms | ||
+ | | University of Alicante | ||
+ | | Basic list of negative terms. | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[DLSIUAES Negation_list - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
− | | | + | | UAIC Quantifier_list |
− | | | + | | List of quantifiers |
− | | | + | | „Al. I. Cuza“ University, Iasi, Romania |
− | | | + | | List of quantifiers affecting entailment judgment. The quantifiers are taken from a list which contains expressions like “more than”, “less than”, or words such as “over”, “under”, etc. |
− | | | + | | style="text-align: center;"|0 |
− | | | + | | style="text-align: center;"|0 |
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[UAIC Quantifier_list - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
− | | | + | | FBKirst StopWord list |
− | | | + | | List of frequent words |
− | | | + | | FBK-Irst;<br/>University of Trento - Italy |
− | | | + | | A list of the 572 most frequent English words. |
− | | | + | | style="text-align: center;"|0 |
− | | | + | | style="text-align: center;"|0 |
+ | | style="text-align: center;"|1 | ||
+ | | style="text-align: center;"|0 | ||
+ | | [[FBKirst StopWord list - RTE Users|Users]] | ||
+ | |||
|- bgcolor="#ECECEC" "align="left" | |- bgcolor="#ECECEC" "align="left" | ||
− | | | + | | IKOMA Dictionary of Named Entities Acronyms and Synonyms |
− | | | + | | Dictionary of Named Entities Acronyms and Synonyms |
− | | | + | | IKOMA; NEC Corporation, Takayama, Ikoma, Nara, Japan |
− | | | + | | Acronym dictionary constructed automatically from the corpus and a synonym dictionary that contains geographical terms. |
− | | | + | | style="text-align: center;"|0 |
− | | | + | | style="text-align: center;"|0 |
+ | | style="text-align: center;"|0 | ||
+ | | style="text-align: center;"|1 | ||
+ | | [[IKOMA2 - RTE Users|Users]] | ||
+ | |||
|} | |} | ||
+ | <br> | ||
+ | |||
+ | ==Footnotes== | ||
+ | <references/> | ||
+ | |||
+ | Return to: [[Textual_Entailment_Resource_Pool]] |
Latest revision as of 04:18, 25 June 2012
Knowledge resources have shown their relevance for applied semantic inference, and are extensively used by applied inference systems, such as those developed within the Textual Entailment framework.
This page presents a list of the knowledge resources used by systems that have participated in the last RTE challenges. The first table lists the publicly available resources, the second one lists unpublished resources. Both tables are sortable by Resource name, type, author and number of users.
RTE Participants are encouraged to add information about all kind of knowledge resources used, from standard existing resources (e.g. WordNet) to knowledge collections created for specific purposes, which can be made available to the community.
Call for Resources
In order to help the research, all the participants are invited to contribute, sharing their own resources with the RTE community.
Making the resources available to be used by other systems has several advantages. On the one hand, it helps improve the TE technology; on the other hand, it offers an opportunity to further test and evaluate the resource.
Ablation Tests
An ablation test consists of removing one module at a time from a system, and rerunning the system on the test set with the other modules, except the one tested.
Ablation test are meant to help better understand the relevance of the knowledge resources used by RTE systems, and evaluate the contribution of each of them to the systems' performances. In fact, comparing the results achieved in the ablation tests to those obtained by the systems as a whole allows assessing the contribution given by each single resource.
Publicly available Resources
Resource | Type | Author | Brief description | PAST Users [1] | RTE4 Users[2] | RTE5 Users[3] | RTE6 Users[4] | Usage info |
---|---|---|---|---|---|---|---|---|
WordNet | Lexical DB | Princeton University | Lexical database of English nouns, verbs, adjectives and adverbs | 3 | 21 | 18 | 22 | Users |
eXtended Wordnet | Lexical DB | Human Language Technology Research Institute, University of Texas at Dallas | Extension of WordNet based on the exploitation of the information contained in WordNet definitional glosses: the glosses are syntactically parsed, transformed into logic forms and content words are semantically disambiguated. The Extended Wordnet is an ongoing project. | 0 | 0 | 2 | 0 | Users |
Augmented Wordnet | Lexical DB | Stanford University | The resource is the result of the application of a learning algorithm for inducing semantic taxonomies from parsed text. The algorithm automatically acquires items of world knowledge, and uses these to produce significantly enhanced versions of WordNet (up to 40,000 synsets more). | 0 | 0 | 1 | 0 | Users |
Verbnet | Lexical DB | University of Colorado Boulder | Lexicon for English verbs organized into classes extending Levin (1993) classes through refinement and addition of subclasses to achieve syntactic and semantic coherence among members of a class | 2 | 2 | 1 | 0 | Users |
VerbOcean | Lexical DB | Information Sciences Institute, University of Southern California | Broad-coverage semantic network of verbs | 2 | 3 | 6 | 7 | Users |
FrameNet | Lexical DB | ICSI (International Computer Science Institute) - Berkley University | Lexical resource for English words, based on frame semantics (valences) and supported by corpus evidence | 1 | 1 | 2 | 3 | Users |
NomBank | Lexical DB | New York University | Lexical resource containing syntactic frames for nouns, extracted from annotated corpora | 2 | 1 | 0 | 0 | Users |
PropBank | Lexical DB | University of Colorado Boulder | Lexical resource containing syntactic frames for verbs, extracted from annotated corpora | 2 | 1 | 1 | 0 | Users |
Nomlex Plus | Lexical DB | New York University | Dictionary of English nominalizations: it describes the allowed complements for a nominalization and relates the nominal complements to the arguments of the corresponding verb | 0 | 1 | 0 | 0 | Users |
Dekang Lin’s Thesaurus | Thesaurus | University of Alberta | Thesaurus automatically constructed using a parsed corpus, based on distributional similarity scores | 0 | 1 | 1 | 2 | Users |
Grady Ward's Moby Thesaurus | Thesaurus | University of Sheffield | Thesaurus containing 30,260 root words, with 2,520,264 synonyms and related terms. Grady Ward placed this thesaurus in the public domain in 1996. | 0 | 0 | 1 | 0 | Users |
Roget's Thesaurus | Thesaurus | Peter Mark Roget (Electronic version distributed by University of Chicago) | Roget's Thesaurus is a widely-used English thesaurus, created by Dr. Peter Mark Roget in 1805. The original edition had 15,000 words, and each new edition has been larger. The electronic edition (version 1.02) is made available by University of Chicago. | 1 | 0 | 1 | 0 | Users |
Wikipedia | Encyclopedia | Free encyclopedia. Used for extraction of lexical-semantic rules (from its more structured parts), named entity recognition, geographical information etc. | 0 | 3 | 6 | 6 | Users | |
Umbel | Ontology | Structured Dynamics LLC, Coralville, IA | UMBEL stands for Upper Mapping and Binding Exchange Layer and is a lightweight ontology structure for relating Web content and data to a standard set of subject concepts | 0 | 0 | 1 | 0 | Users |
YAGO | Ontology | Max-Planck Institute for Informatics, Saarbrücken, Germany | Light-weight and extensible ontology. It contains more than 2 million entities and 20 million facts about these entities. The facts have been automatically extracted from Wikipedia and unified with WordNet. | 0 | 0 | 1 | 0 | Users |
DBpedia | Ontology | Open community project | DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. The DBpedia knowledge base currently describes more than 2.9 million things in 91 different languages and consists of 479 million pieces of information. | 0 | 0 | 1 | 0 | Users |
DIRT Paraphrase Collection | Collection of paraphrases | University of Alberta | DIRT (Discovery of Inference Rules from Text) is both an algorithm and a resulting knowledge collection. The DIRT knowledge collection is the output of the DIRT algorithm over a 1GB set of newspaper text. | 2 | 4 | 3 | 4 | Users |
TEASE Collection | Collection of Entailment Rules | Bar-Ilan University | Output of the TEASE algorithm | 0 | 0 | 0 | 0 | Users |
BADC Acronym and Abbreviation List | Word List | BADC (British Atmospheric Data Centre) | Acronym and Abbreviation List | 0 | 1 | 1 | 0 | Users |
Catvar The Categorial Variation Database (English) | Word List | University of Maryland | A Categorial-Variation Database (or Catvar) is a database of clusters of uninflected words (lexemes) and their categorial (i.e. part-of-speech) variants. The database was developed for English using a combination of resources and algorithms, including the LCS Verb and Preposition Databases (Dorr 2001), the Brown Corpus section of the Penn Treebank (Marcus et al. 1994), an English morphological analysis lexicon developed for PC-Kimmo (ENGLEX) (Antworth 1990), WordNet1.6 (Fellbaum 1998), an English Verb-Noun list extracted from Nomlex (Macleod et al. 1998), a similar list extracted from LDOCE (Procter 1978) and the Porter stemmer (Porter 1980). | 0 | 0 | 0 | 1 | Users
|
Acronym Guide | Word List | Acronym-Guide.com | Acronym and Abbreviation Lists for English, branched in thematic directories | 1 | 1 | 3 | 0 | Users |
Web1T 5-grams | Word list | Linguistic Data Consortium, University of Pennsylvania; Google Inc. | Data set containing English word n-grams and their observed frequency counts. The n-gram counts were generated from approximately 1 trillion word tokens of text from publicly accessible Web pages | 0 | 1 | 0 | 0 | Users |
Normalized Google Distance (RTE3&RTE4) | Word Pair Co-occurrence | Saarland University | Co-occurrence of the word pairs in RTE3 and RTE4 using Normalized Google Distance (Cilibrasi and Vitanyi, 2004). The word pairs are all the possible combinations of content words in T and H. In practice, we used Yahoo! as the search engine. | 0 | 0 | 1 | 0 | Users |
Normalized Google Distance (RTE5) | Word Pair Co-occurrence | Saarland University | Co-occurrence of the word pairs in RTE3 and RTE4 using Normalized Google Distance (Cilibrasi and Vitanyi, 2004). The word pairs are all the possible combinations of content words in T and H. In practice, we used Yahoo! as the search engine. | 0 | 0 | 1 | 0 | Users |
GNIS - Geographic Names Information System | Gazetteer | USGS (United States Geological Survey) | Database containing the Federal and national standard toponyms for USA, associated areas and Antarctica | 0 | 1 | 0 | 0 | Users |
Geonames | Gazetteer | Database containing eight million geographical names. It is integrating geographical data such as names of places in various languages, elevation, population and others from various sources. | 0 | 1 | 0 | 0 | Users | |
Sekine's Paraphrase Database | Collection of paraphrases | Department of Computer Science, New York University | Data-base created using Sekine's method, NOT cleaned up by human. It includes 19,975 sets of paraphrases with 191,572 phrases. | 0 | 0 | 0 | 0 | Users |
Microsoft Research Paraphrase Corpus | Collection of paraphrases | Microsoft Research | Text file containing 5800 pairs of sentences which have been extracted from news sources on the web, along with human annotations indicating whether each pair captures a paraphrase/semantic equivalence relationship. | 0 | 0 | 0 | 0 | Users |
Downward entailing operators | Collection of entailing operators | Department of Computer Science, Cornell University, Ithaca NY | System output of an unsupervised algorithm recovering many Downward Entailing operators, like 'doubt'. | 0 | 0 | 1 | 0 | Users |
WikiRules! | Lexical Reference rule-base | Bar-Ilan University | Extraction of about 8 million lexical reference rules from the text body (first sentence) and from metadata (links, redirects, parentheses) of Wikipedia. Provides better performance than other automatically constructed resources and comparable performance to WordNet. Offers complementary knowledge to WordNet. | 0 | 1 | 1 | 0 | Users |
DART | Collection of "world knowledge" propositions | Boeing Research and Technology | 23 million tuples such as "airplanes can fly to airports", "rivers can flood" collected from abstracted parse trees. | 0 | 0 | 0 | 0 | Users |
FRED | FrameNet-derived entailment rule-base | Bar-Ilan University | This package contains the outputs of the FRED algorithm which extracts entailment rules from FrameNet. | 0 | 0 | 0 | 0 | Users |
DIRECT | Directional Distributional Term-Similarity Resource | Bar-Ilan University | This is a resource of directional distributional term-similarity rules (mostly lexical entailment rules) automatically extracted using the inclusion relation as described in (Kotlerman et.al., ACL-09). | 0 | 0 | 0 | 0 | Users |
binaryDIRT | Entailment rules between binary templates using DIRT algorithm | Bar-Ilan University | This resource contains entailment rules over binary templates learned over the Reuters corpus using
the DIRT algorithm of Lin and Pantel. |
0 | 0 | 0 | 0 | Users |
unaryBInc | Entailment rules between unary templates using BInc algorithm | Bar-Ilan University | This resource contains entailment rules over unary templates learned over the Reuters corpus using
the BInc algorithm of Szpektor and Dagan (2008). |
0 | 0 | 0 | 0 | Users |
New resource | Participants are encouraged to contribute | Users |
Not available Resources
The following table lists the unpublished resources used by RTE participants. Some of them have been developed by Users themselves specifically for RTE. Interested people may turn to authors to obtain further information.
Resource | Type | Author | Brief description | PAST Users | RTE4 Users | RTE5 Users | RTE6 Users | Usage info |
---|---|---|---|---|---|---|---|---|
PARC Polarity Lexicon | Lexical DB | PARC - Palo Alto Research Center | Verbs classification with respect to semantic polarity | 0 | 1 | 0 | 0 | Users |
Gazetteer from TREC | Gazetteer | NIST - National Institute of Standards and Technology | Cities and other geographical names | 1 | 0 | 0 | 0 | Users |
DFKI Geographic Ontology (to be released) |
Ontology | DFKI - German Research Center for Artificial Intelligence | Ontology containing geographic terms and two kinds of relations: the directional part-of relation, and the equal relation for synonyms and abbreviations of the same geographic area (e.g the United Kingdom, the UK, Great Britain, etc.) | 0 | 1 | 0 | 0 | Users |
Geo | Collection of Entailment Rules | Bar-Ilan University; Tel-Aviv University | Meronymy entailment rules, based on TREC’s TIPSTER gazetteer. | 0 | 0 | 1 | 0 | Users |
Regex | Collection of Entailment rules | Bar-Ilan University; Tel-Aviv University | Small set of entailment rules based on regular expressions, intended to address lexical variability involving temporal phrases | 0 | 0 | 1 | 0 | Users |
Syntactic rule base (to be released) |
Collection of Entailment Rules | Bar-Ilan University; Tel-Aviv University | A manually-composed collection of entailment rules which define parse tree transformations. The rules cover generic syntactic phenomena such as appositions, conjunctions, passive, relative clause, etc. (Bar-Haim et al., AAAI-07) | 0 | 1 | 1 | 0 | Users |
Polarity rule base (to be released) |
Collection of Entailment Rules | Bar-Ilan University; Tel-Aviv University | A manually-composed collection of entailment rules which detect predicates whose polarity is negative (e.g. didn't dance) or unknown (e.g. plans to dance). The rules capture diverse phenomena that affect polarity, e.g. verbal negation, modal verbs, conditionals, and certain verbs that induce negative or "unknown" polarity context. The latter were taken mainly from VerbNet. Extends a resource described in (Bar-Haim et al., AAAI-07) | 0 | 1 | 0 | 0 | Users |
Lexical-Syntactic rule base | Collection of Entailment Rules | Bar-Ilan University; Tel-Aviv University | Extract lexical-syntactic entailment rules for predicates (verbal and nominal), including argument mapping. The resource is based on WordNet, Nomlex-Plus and Unary DIRT (Szpektor and Dagan, Coling 08) | 0 | 1 | 0 | 0 | Users |
OPENU Collection | Collection of Entailment Rules and Patterns | Open University | Collections of rules, patterns etc. for RTE purpose, extracted from Reuter corpus parsed using Minipar. | 1 | 0 | 0 | 0 | Users |
Abbr | Collection of rules for abbreviation | Bar-Ilan University; Tel-Aviv University | 2000 Abbreviation rules, extracted from BADC and Acronym Guide | 0 | 0 | 1 | 0 | Users |
UAIC Negation_list | Negation rules | „Al. I. Cuza“ University, Iasi, Romania | List of negative terms and words (verbs, adjectives, nouns) affecting modality or factuality of a infinitive verb preceded by the particle "to" (e.g. "believe","necessary", "attempt") | 0 | 0 | 1 | 0 | Users |
DLSIUAES Negation_list | List of negative terms | University of Alicante | Basic list of negative terms. | 0 | 0 | 1 | 0 | Users |
UAIC Quantifier_list | List of quantifiers | „Al. I. Cuza“ University, Iasi, Romania | List of quantifiers affecting entailment judgment. The quantifiers are taken from a list which contains expressions like “more than”, “less than”, or words such as “over”, “under”, etc. | 0 | 0 | 1 | 0 | Users |
FBKirst StopWord list | List of frequent words | FBK-Irst; University of Trento - Italy |
A list of the 572 most frequent English words. | 0 | 0 | 1 | 0 | Users |
IKOMA Dictionary of Named Entities Acronyms and Synonyms | Dictionary of Named Entities Acronyms and Synonyms | IKOMA; NEC Corporation, Takayama, Ikoma, Nara, Japan | Acronym dictionary constructed automatically from the corpus and a synonym dictionary that contains geographical terms. | 0 | 0 | 0 | 1 | Users |
Footnotes
- ↑ RTE-3 data have been provided by participants by means of a questionnaire.
- ↑ RTE-4 data have been provided by participants and have been integrated with information extracted from the related proceedings.
- ↑ RTE-5 data have been provided by participants and have been integrated with information extracted from the related proceedings.
- ↑ RTE-6 data have been provided by participants and have been integrated with information extracted from the related proceedings.
Return to: Textual_Entailment_Resource_Pool